Effect of Microbial Ratio, Storage Temperature, and Packaging on the Viability and Stability of Co-Inoculated Rhizobium tropici and Azospirillum spp. in Nitrogen-Fixing Biofertilizer
DOI:
https://doi.org/10.65141/tjeraff.v5i2.273Keywords:
biofertilizer stability, Rhizobium tropici, Azospirillum spp, co-inoculation, microbial viabilityAbstract
The privatization of Bio-N biofertilizer in the Philippines created an urgent need for locally produced and cost-effective alternatives. In response, the Department of Agriculture–Ilagan Soil Laboratory (DA-ISL) developed a dual-strain biofertilizer by co-formulating Rhizobium tropici, isolated from wild tallgrass (Saccharum spontaneum), with Azospirillum spp., a well-established nitrogen-fixing bacterium. This study aimed to assess the long-term viability and stability of co-inoculated formulations under varying microbial ratios, packaging types, and storage conditions.
An experimental research design was employed, testing five mixtures of R. tropici and Azospirillum spp. stored for 12 months under ambient (28–32 °C) and air-conditioned (20–25 °C) conditions. Viability was assessed monthly using serial dilution and spread plate techniques, with colony-forming units (CFU/g) analyzed to determine formulation and storage performance.
Results showed that microbial populations typically stabilized or increased in the first two to three months before gradually declining. Among all treatments, Mixture A (50% R. tropici + 50% Azospirillum spp.) packaged in aluminum foil and stored under air-conditioned conditions demonstrated the highest stability, maintaining 2.6 × 10? CFU/g at Month 12. In contrast, R. tropici–dominant mixtures exhibited sharper viability losses, while Azospirillum alone remained more resilient. Packaging and storage temperature emerged as critical factors influencing shelf life.
These findings highlight the potential of co-inoculated biofertilizer as farmer-ready product. Balanced microbial ratios, protective foil packaging, and cool storage can ensure product reliability, reduce dependence on commercial inoculants, and strengthen farmer adoption of sustainable soil fertility practices. Future research should validate field performance, assess cost-effectiveness, and explore alternative carriers to support large-scale adoption and farmer use.
References
Al-Tawaha, A.R., Saranraj, P., Sivasakthivelan, P., Amala, K., Imran, Amanullah, Al Tawaha, A. R., Thangadurai, D., Sangeetha, J., Rauf, A., Khalid, S., Alsultan, W., & Alwedyan, M. (2021). Adaptation of Azospirillum to stress conditions: A review. Advances in Environmental Biology, 15(4), 1–5. https://doi.org/10.22587/aeb.2021.15.4.1
Aloo, B. N., Mbega, E. R., Makumba, B. A., & Tumuhairwe, J. B. (2022). Effects of carrier materials and storage temperatures on the viability and stability of three biofertilizer inoculants obtained from potato (Solanum tuberosum L.) rhizosphere. Agriculture, 12(2), Article 140. https://doi.org/10.3390/agriculture12020140
Bahuguna, V., Matura, R., Farswan, A. S., Naqvi, S. S., Sharma, N., & Chaudhary, M. (2025). Rhizobium as a potential biofertilizer and its quality control analysis for sustainable agriculture. Journal of Applied Biology and Biotechnology. https://doi.org/10.7324/jabb.2025.197428
Cassán, F., Coniglio, A., López, G., Molina, R., Nievas, S., de Carlan, C. L. N., Donadio, F., Torres, D., Rosas, S., Pedrosa, F. O., de Souza, E., Zorita, M. D., de-Bashan, L., & Mora, V. (2020). Everything you must know about Azospirillum spp. and its impact on agriculture and beyond. Biology and Fertility of Soils, 56(4), 461–479. https://doi.org/10.1007/s00374-020-01463-y
Consiglio, A. N., Rubinsky, B., & Powell-Palm, M. J. (2022). Relating metabolism suppression and nucleation probability during supercooled biopreservation. Journal of Biomechanical Engineering, 144(7). https://doi.org/10.1115/1.4054217
Elita, N., Erlinda, R., Yefriwati, Y., Rinda, Y., Sari, D. A., Ayu, K. I., Maulina, F., & Hasan, N. A. (2025). Microbial population and nutrient content of a biofertilizer containing Azotobacter sp. and Pseudomonas fluorescens with different carrier materials after storage. Journal of Applied Agricultural Science and Technology, 9(1), 11–22. https://doi.org/10.55043/jaast.v9i1.365
Garcia, M. V. C., Nogueira, M. A., & Hungria, M. (2021). Combining microorganisms in inoculants is agronomically important but industrially challenging: Case study of a composite inoculant containing Bradyrhizobium and Azospirillum spp. for the soybean crop. AMB Express, 11(1). https://doi.org/10.1186/s13568-021-01230-8
Ge, C., Verma, S. S., Burruto, J., Ribalco, N., Ong, J., & Sudhahar, K. (2020). Effects of flexing, optical density, and lamination on barrier and mechanical properties of metallized films and aluminum foil-centered laminates prepared with polyethylene terephthalate and linear low-density polyethylene. Journal of Plastic Film & Sheeting, 37(2), 205–225. https://doi.org/10.1177/8756087920963532
Greffe, V. R. G., & Michiels, J. (2020). Desiccation-induced cell damage in bacteria and the relevance for inoculant production. Applied Microbiology and Biotechnology, 104(9), 3757–3770. https://doi.org/10.1007/s00253-020-10501-6
Gureeva, M. V., & Gureev, A. P. (2023). Molecular mechanisms determining the role of bacteria from the genus Azospirillum in plant adaptation to damaging environmental factors. International Journal of Molecular Sciences, 24(11), Article 9122. https://doi.org/10.3390/ijms24119122
Hindersah, R., Rahmadina, I., Harryanto, R., Suryatmana, P., & Arifin, M. (2021). Bacillus and Azotobacter counts in solid biofertilizer with different concentration of zeolite and liquid inoculant. IOP Conference Series: Earth and Environmental Science, 667(1), Article 012010. https://doi.org/10.1088/1755-1315/667/1/012010
Indratmi, D., Iriany, A., Ikhwan, A., & Hafsah, R. (2021). Storability and viability of biofertilizer in various formulas of carrier and packaging. International Journal of Agriculture and Environmental Research, 7(5), 780–790. https://doi.org/10.51193/ijaer.2021.7502
Liu, X., Mei, S., & Salles, J. F. (2023). Do inoculated microbial consortia perform better than single strains in living soil? A meta-analysis. bioRxiv. https://doi.org/10.1101/2023.03.17.533112
Macarena Fernández, P., Pagnussat, L. A., Borrajo, M. P., Jose, J., Francois, N. J., & Creus, C. M. (2022). Chitosan/starch beads as bioinoculant carriers: Long-term survival of bacteria and plant growth promotion. Applied Microbiology and Biotechnology, 106(23), 7963–7972. https://doi.org/10.1007/s00253-022-12220-6
Machado, D., Maistrenko, O. M., Andrejev, S., Kim, Y., Bork, P., & Patil, K. R. (2021). Polarization of microbial communities between competitive and cooperative metabolism. Nature Ecology & Evolution, 5(2), 195–203. https://doi.org/10.1038/s41559-020-01353-4
Maximiano, M. R., Megías, E., Santos, I. R., Santos, L. S., Ollero, F. J., Megías, M., Franco, O. L., & Mehta, A. (2020). Proteome responses of Rhizobium tropici CIAT 899 upon apigenin and salt stress induction. Applied Soil Ecology, 159, Article 103815. https://doi.org/10.1016/j.apsoil.2020.103815
Mateus, M.P., Gomes, V., Muraoka, C. Y., Bruna, F., Souchie, E. L., Braccini, A. L., Lazarini, E., Marino, I., Cato, S. C., & Tezotto, T. (2022). Combination of Azospirillum spp. and Bradyrhizobium on inoculant formulation improves nitrogen biological fixation in soybean. Journal of Agricultural Science, 14(4), 145. https://doi.org/10.5539/jas.v14n4p145
Mickael, N., Teixeira, I. R., Carneiro, G., Rocha, E. C., Peixoto, E., Caldeira, L., Fernandes Damião, E., & Sbroggio, M. (2025). Physiological quality of bean seeds cultivated with rhizobia reinoculation and Azospirillum co-inoculation at different growth stages. Microorganisms, 13(4), Article 805. https://doi.org/10.3390/microorganisms13040805
Nguyen, H.-L., Tran, T. H., Hao, L. T., Jeon, H., Koo, J. M., Shin, G., Hwang, D. S., Hwang, S. Y., Park, J., & Oh, D. X. (2021). Biorenewable, transparent, and oxygen/moisture barrier nanocellulose/nanochitin-based coating on polypropylene for food packaging applications. Carbohydrate Polymers, 271, Article 118421. https://doi.org/10.1016/j.carbpol.2021.118421
Nievas, S., Coniglio, A., Takahashi, W. Y., López, G. A., Larama, G., Torres, D. I., Rosas, S. M., Mazer Etto, R., Galvão, C. W., Mora, V. C., & Cassán, F. (2023). Unraveling Azospirillum spp.’s colonization ability through microbiological and molecular evidence. Journal of Applied Microbiology, 134(4). https://doi.org/10.1093/jambio/lxad071
Pandey, V. C., & Singh, D. P. (2020). Saccharum spp.: Potential role in ecorestoration and biomass production. In Phytoremediation potential of perennial grasses (pp. 211–226). Elsevier. https://doi.org/10.1016/B978-0-12-817732-7.00010-9
Patil, C., Patil, S. S., & Sriramareddy, P. (2025). Development of optimized liquid formulations of Azospirillum spp., phosphate-solubilizing bacteria, and Rhizobium strains for enhanced viability and shelf life. Asian Journal of Biotechnology and Bioresource Technology, 11(1), 1–13. https://doi.org/10.9734/ajb2t/2025/v11i1228
Peña, K. D. (2024, November). Bio-N: Cheaper PH-made fertilizer in chains. INQUIRER.net. https://newsinfo.inquirer.net/2010312/bio-n-cheaper-ph-made-fertilizer-in-chains
Pedraza, R. O., Filippone, M. P., Fontana, C., Salazar, S. M., Ramírez-Mata, A., Sierra-Cacho, D., & Baca, B. E. (2020). Azospirillum spp. In Beneficial microbes in agro-ecology (pp. 73–105). https://doi.org/10.1016/B978-0-12-823414-3.00006-X
Priyanka, N., Kumar, S., & Sharma, S. (2024). Development of bacterial bioformulations using response surface methodology. Journal of Applied Microbiology, 135(11). https://doi.org/10.1093/jambio/lxae263
Republic of the Philippines Department of Agriculture Fertilizer and Pesticide Authority. (n.d.). Fertilizer product listing. Retrieved September 9, 2025, from https://fpa.da.gov.ph/wp-content/uploads/2025/03/FOR-POSTING_FERTILIZER_PRODUCT_LISTING_AS_OF_FEBRUARY-28-2025_rev-mbd.pdf
Rizvi, A., Ahmed, B., Khan, M. S., Umar, S., & Lee, J. (2021). Psychrophilic bacterial phosphate-biofertilizers: A novel extremophile for sustainable crop production under cold environment. Microorganisms, 9(12), 2451. https://doi.org/10.3390/microorganisms9122451
Saputro, F. A., & Kurniawati, H. (2024). The application of biofertilizer to realize sustainable agricultural program: A review. ISST, 3, 133–142. https://doi.org/10.33830/isst.v3i1.2317
Shamim, A., Mahfooz, S., Hussain, A., & Farooqui, A. (2020). Ability of Al-acclimatized immobilized Nostoc muscorum to combat abiotic stress and its potential as a biofertilizer. Journal of Pure and Applied Microbiology, 14(2), 1377– https://doi.org/10.22207/jpam.14.2.35
Somero, G. N. (2020). The cellular stress response and temperature: Function, regulation, and evolution. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 333(6), 379–397. https://doi.org/10.1002/jez.2344
Thomloudi, E.-E., Tsalgatidou, P. C., Douka, D., Spantidos, T.-N., Dimou, M., Venieraki, A., & Katinakis, P. (2019). Multistrain versus single-strain plant growth promoting microbial inoculants—The compatibility issue. Hellenic Plant Protection Journal, 12(2), 61–77. https://doi.org/10.2478/hppj-2019-0007
Zhang, Y., Ku, Y.-S., Cheung, T.-Y., Cheng, S.-S., Xin, D., Gombeau, K., Cai, Y., Lam, H.-M., & Chan, T.-F. (2024). Challenges to rhizobial adaptability in a changing climate: Genetic engineering solutions for stress tolerance. Microbiological Research, 288, Article 127886. https://doi.org/10.1016/j.micres.2024.127886




