Microscopic Investigation and Identification of Mitotic Stages Using Onion (Allium cepa) and Onion Spring (Allium fistulosum)
DOI:
https://doi.org/10.65141/tjeraff.v5i2.258Keywords:
Mitosis, Allium cepa, Allium fistulosum, Cytological techniques, Acetocarmine stainingAbstract
Mitosis is a fundamental process in plant growth and development because it governs the production of new cells in meristematic tissues. Examining its stages provides insights into genetic stability and cellular behavior, which are relevant to agriculture, crop improvement, and environmental monitoring. Although cytological studies using Allium species are well established, there is continued value in demonstrating how classical staining methods, such as acetocarmine, effectively visualize mitotic events in educational and basic laboratory settings. This study aimed to identify and describe the stages of mitosis in onion (Allium cepa) and spring onion (Allium fistulosum) root tips using acetocarmine-stained squash preparations. Fresh root tips were hydrolyzed in hydrochloric acid, stained with acetocarmine, and examined under a compound light microscope. The observed mitotic stages were documented based on chromatin morphology and nuclear characteristics. Both species exhibited similar observable mitotic features under the staining and microscopic conditions used, with clear visualization of prophase, metaphase, and telophase, identified by chromatin condensation, chromosome alignment, and nuclear reformation, respectively. Anaphase was not observed, likely due to its brief duration relative to the other phases. Overall, the results demonstrate that acetocarmine staining provides reliable visualization of major mitotic stages, although it lacks sufficient resolution to distinguish individual chromosomes. These findings confirm that simple cytological techniques remain effective tools for demonstrating mitosis in instructional and introductory research contexts. Future studies may employ DNA-specific stains, digital imaging, and larger sample sizes to capture short-lived stages and enable quantitative analysis.
References
Ali, M. M., Liman, R., Istifli, E. S., Cigerci, ?. H., Tinaz, U., Kirlangiç, S., Altay, N., & Ugur, Y. Y. (2025). Cyto-genotoxic assessment of sulfoxaflor in Allium cepa root cells and DNA docking studies. Microscopy Research and Technique, 88(5), 1521–1533. https://doi.org/10.1002/jemt.24807
Animasaun, D. A., Adedibu, P. A., Afolabi, S. O., Abdulkareem, K. A., Ibrahim, S., & Krishnamurthy, R. (2024). Hazard assessment and cytogenotoxic effect of different concentrations of mercury chloride sterilant using the Allium cepa assay. Discover Toxicology, 1, Article 2. https://doi.org/10.1007/s44339-024-00002-w
Arora, K., Sharma, M., Sachdev, R. K., & Lovleen. (2023). Chromosomal and nuclear alterations induced by essential oil extracted from Eucalyptus citriodora. Cytologia, 88(4), 301–306. https://doi.org/10.1508/cytologia.88.301
Biol, J., & Juruena, M. (2024). Histopathological profiling of banana varieties infected with Fusarium oxysporum f. sp. cubense tropical race 4. Linker: Journal of Emerging Research in Agriculture, Fisheries, and Forestry, 4(2), 1–10. https://doi.org/10.65141/jeraff.v4i2.n1
Cablinan, A. (2024). Agrilime and effective microorganisms as growth and yield enhancer of soybean (Glycine max L.). Linker: Journal of Emerging Research in Agriculture, Fisheries, and Forestry, 4(1), 71–87. https://doi.org/10.65141/jeraff.v4i1.n6
Cavusoglu, D. (2023). Modulation of NaCl-induced osmotic, cytogenetic, oxidative and anatomic damages by coronatine treatment in onion (Allium cepa L.). Scientific Reports, 13(1), Article 1580. https://doi.org/10.1038/s41598-023-28849-w
Desvoyes, B., Echevarría, C., & Gutierrez, C. (2021). A perspective on cell proliferation kinetics in the root apical meristem. Journal of Experimental Botany, 72(19), 6708–6715. https://doi.org/10.1093/jxb/erab303
Ding, A., Chun-Tao, X., Qiang, X., Ming-Jin, Z., Ning, Y., Chang-Bo, D., Ling, L., Meng-meng, C., Wei-Feng, W., & Yu-He, S. (2022). ERF4 interacts with and antagonizes TCP15 in regulating endoreduplication and cell growth in Arabidopsis. Journal of Integrative Plant Biology, 64(10), 1673–1689. https://doi.org/10.1111/jipb.13323
Iemura, K., Yoshizaki, Y., Kuniyasu, K., & Tanaka, K. (2021). Attenuated chromosome oscillation as a cause of chromosomal instability in cancer cells. Cancers, 13(18), Article 4531. https://doi.org/10.3390/cancers13184531
Kone?ná, M., Abbasi Sani, S., & Anger, M. (2023). Separase and roads to disengage sister chromatids during anaphase. International Journal of Molecular Sciences, 24(5), Article 4604. https://doi.org/10.3390/ijms24054604
Kuçuk, D., & Liman, R. (2018). Cytogenetic and genotoxic effects of 2-chlorophenol on Allium cepa L. root meristem cells. Environmental Science and Pollution Research, 25(36), 36117–36123. https://doi.org/10.1007/s11356-018-3502-0
Lindsay, P., Swentowsky, K. W., & Jackson, D. (2024). Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. Molecular Plant, 17(1), 50–74. https://doi.org/10.1016/j.molp.2023.12.014
Manjula, A. C., Shubha, V. M., Prathibha, K. Y., Ruchita, B., Sukanya, M., & Banu, M. (2024). Comparative study on the effects of colchicine on mitosis in Allium cepa var. aggregatum and Allium sativum var. sativum root meristem cells. Revista Electrónica de Veterinaria, 25(1), 3902–3921. https://doi.org/10.69980/redvet.v25i1.1801
Onisan, E., Sarac, I., Petolescu, C., Horablaga, M. N., Mate, C., Simina, A., Camen, D., Ganea, M., Ardelean, D. R., Calugar, L., Petrescu, I., & ?tef, R. (2025). Application of the Allium test in toxicity studies of lead and copper: A cytological perspective. Applied Sciences, 15(3), Article 1491. https://doi.org/10.3390/app15031491
Padmasri, G. Y., Thangabalan, B., Baji, S. N., Vijayasree, B., Harika, K., Venkateswarlu, M., Tanuja, K., & Samyuktha, C. (2025). A review on mitotic cell cycle phase and chromosomes in onion root tips using acetocarmine stain. International Journal of Pharmacognosy and Pharmaceutical Sciences, 7(1), 27–32. https://doi.org/10.33545/27067009.2025.v7.i1a.164
Park, J., Cho, J., Kim, E. E., & Song, E. J. (2019). Deubiquitinating enzymes: A critical regulator of mitosis. International Journal of Molecular Sciences, 20(23), Article 5997. https://doi.org/10.3390/ijms20235997
Parrott Lab. (2024). Appendix: Preparation of plant root tips for mitotic analysis [PDF]. University of Georgia. https://www.parrottlab.uga.edu/files/2024/08/Root-tip-squash-21.pdf
Ramírez-Castillo, R., Palma-Rojas, C., Jara-Seguel, P., Grusz, A. L., & Araya-Jaime, C. (2024). Unfurling an improved method for visualizing mitotic chromosomes in ferns. Applications in Plant Sciences, 12(4), e11588. https://doi.org/10.1002/aps3.11588
Ristea, M.-E., & Z?rnescu, O. (2023). Effects of indigo carmine on growth, cell division, and morphology of Allium cepa L. root tip. Toxics, 12(3), Article 194. https://doi.org/10.3390/toxics12030194
Robinson, S. (2021). Mechanobiology of cell division in plant growth. New Phytologist, 231(2), 559–564. https://doi.org/10.1111/nph.17369
Sabeen, M., Mahmood, Q., Bhatti, Z. A., Faridullah, Irshad, M., Bilal, M., Hayat, M. T., Irshad, U., Akbar, T. A., Arslan, M., & Shahid, N. (2020). Allium cepa assay-based comparative study of selected vegetables and the chromosomal aberrations due to heavy metal accumulation. Saudi Journal of Biological Sciences, 27(5), 1368–1374. https://doi.org/10.1016/j.sjbs.2019.12.011
Sablowski, R., & Gutierrez, C. (2022). Cycling in a crowd: Coordination of plant cell division, growth, and cell fate. The Plant Cell, 34(1), 193–208. https://doi.org/10.1093/plcell/koab222
Stamatiou, K., & Vagnarelli, P. (2021). Chromosome clustering in mitosis by the nuclear protein Ki-67. Biochemical Society Transactions, 49(6), 2767–2776. https://doi.org/10.1042/BST20210717
Zhong, M., He, H., Ni, P., Huang, C., Zhang, T., Chen, W., Liu, L., Wang, C., Jiang, X., Pu, L., Yuan, T., Liang, J., Fan, Y., & Zhang, X. (2025). Semi-quantitative scoring criteria based on multiple staining methods combined with machine learning to evaluate residual nuclei in decellularized matrix. Regenerative Biomaterials, 12. https://doi.org/10.1093/rb/rbae147




