Agrilime and Effective Microorganisms as Growth and Yield Enhancer of Soybean (Glycine max L.)

Authors

  • Angelica L. Cablinan Quirino State University, Isabela State University

DOI:

https://doi.org/10.65141/jeraff.v4i1.n6

Keywords:

Agrilime, soybean, pods, growth and yield enhancer, nutrient management practice

Abstract

Soil health is a fundamental component of sustainable agriculture, directly influencing crop productivity, nutrient availability, and overall plant health. This study on soybean, using agrilime and effective microorganisms as growth and yield enhancers, was conducted at the experiment area of Quirino State University, Maddela, Quirino, from February 1, 2023, to June 2, 2023. Specifically, it evaluated the effects of different treatments on the growth and yield of soybeans and
assessed which treatment combinations achieved the highest return on investment and enhanced the chemical properties of the soil. The study was laid out in a Randomized Complete Block Design (RCBD) with four replications and six treatment combinations. The application of 2 bags 16-20-0 ha?¹ + 7,500 ml EM ha?¹ + 500 kg Agrilime ha?¹ significantly affected the growth and yield of soybean, as well as the chemical properties of the soil in terms of soil pH, nitrogen, available phosphorus, and available potassium. These farm input combinations are potential nutrient management practices to obtain maximum yield in soybean production on acidic soil. This nutrient management practice may not only improve growth and yield but also enhance the chemical properties of the soil.

References

Abeje, A., Alemayehu, G., & Feyisa, T. (2021). Nodulation, growth, and yield of soybean (Glycine max L. Merrill) as affected by bio-, organic, and inorganic NPSB fertilizers, and lime in Assosa Zone, Western Ethiopia. International Journal of Agronomy, 2021, Article ID 1285809. https://doi.org/10.1155/2021/1285809

Adeleke, R. A., Raimi, A. R., Roopnarain, A., & Mokubedi, S. M. (2019). Status and prospects of bacterial inoculants for sustainable management of agro-ecosystems. In B. Giri, R. Prasad, Q. S. Wu, & A. Varma (Eds.), Biofertilizers for sustainable agriculture and environment (pp. 121–146). Springer. https://doi.org/10.1007/978-3-030-18933-4_7

Agcopra, J., & Piadozo, M. (2015). Cost and price competitiveness of soybean production in Isabela, Philippines. Journal of Economics, Management & Agricultural Development, 4(1), 27–42.

Alori, E. T., Dare, M. O., & Babalola, O. O. (2017). Microbial inoculants for soil quality and plant health. In E. Lichtfouse (Ed.), Sustainable agriculture reviews (Vol. 24, pp. 281–307). Springer. https://doi.org/10.1007/978-3-319-48006-0_9

Aquino, R. M. G., Olinares, R. B., Alviar, L. R., Lorenzana, O. J., Nerona, N. A., Calderon, V. J. F., Cruz, C. G., & Atalin, V. U. (2018). Cagayan Valley organic soybean development program in support of nutrition and food security in the Philippines. Acta Horticulturae, 1213, 465–474. https://doi.org/10.17660/ActaHortic.2018.1213.69

Aremu, B. R., Alori, E. T., Kutu, R. F., & Babalola, O. O. (2017). Potentials of microbial inoculants in soil productivity: An outlook on African legumes. In D. Panpatte, Y. Jhala, R. Vyas, & H. Shelat (Eds.), Microorganisms for green revolution (pp. 37–58). Springer. https://doi.org/10.1007/978-981-10-6241-4_3

Asefa, G. (2019). The role of harvest index in improving crop productivity: A review. Journal of Natural Sciences Research, 9(6), 51–56. https://doi.org/10.7176/JNSR

Bakari, R., Mungai, N., Thuita, M., & Masso, C. (2020). Impact of soil acidity and liming on soybean (Glycine max) nodulation and nitrogen fixation in Kenyan soils. Soil & Plant Science. Advance online publication. https://doi.org/10.1080/09064710.2020.1833976

Bedassa, T. A., Abebe, A. T., & Tolessa, A. R. (2022). Tolerance to soil acidity of soybean (Glycine max L.) genotypes under field conditions in Southwestern Ethiopia. PLoS ONE, 17(9), e0272924. https://doi.org/10.1371/journal.pone.0272924

Bhatt, M., Labanya, R., & Joshi, H. (2019). Influence of long-term chemical fertilizers and organic manures on soil fertility: A review. Universal Journal of Agricultural Research, 7(5), 177–188. https://doi.org/10.13189/ujar.2019.070502

Cabanos, C., Matsuoka, Y., & Maruyama, N. (2021). Soybean proteins/peptides: A review on their importance, biosynthesis, vacuolar sorting, and accumulation in seeds. Peptides, 143, 170598. https://doi.org/10.1016/j.peptides.2021.170598

Calderon, V. J. F., Aquino, R. M. G., Olinares, R. B., Dela Cruz, C. G., Batang, E. F. Jr., Atalin, V. U., Manaligod, K., & De Guzman, S. (2018). Enhancing soybean productivity and local availability in Region 2 (Cagayan Valley, Philippines). Philippine Journal of Crop Science, 43(Suppl. 1), 43–44. (Proceedings abstract)

Chauhan, A., & Mittu, B. (2015). Soil health: An issue of concern for environment and agriculture. Journal of Bioremediation & Biodegradation, 6(3), 286.

Colussi, J., & Schnitkey, G. (2021, June 14). Brazil likely to remain world leader in soybean production. Farmdoc Daily, 11(105).

Costa, C. H. M., & Crusciol, C. A. C. (2016). Long-term effects of lime and phosphogypsum application on tropical no-till soybean–oat–sorghum rotation and soil chemical properties. European Journal of Agronomy, 74, 119–132. https://doi.org/10.1016/j.eja.2015.12.001

Dabesa, A., & Tana, T. (2021). Response of soybean (Glycine max L. Merrill) to Bradyrhizobium inoculation, lime, and phosphorus applications at Bako, Western Ethiopia. International Journal of Agronomy, 2021, Article ID 6686957. https://doi.org/10.1155/2021/6686957

Dawid, J., & Hailu, G. (2017). Application of lime for acid soil amelioration and better soybean performance in Southwestern Ethiopia. Journal of Biology, Agriculture and Healthcare, 7(5), 33–39.

de Chavez, H., Borromeo, T., Borines, N. O., & Gentallan Jr., R. (2017). Phenotypic diversity of soybean [Glycine max (L.) Merr.] accessions in the Philippines for utilization. Legume Research – An International Journal, 40(1), 9–15. https://doi.org/10.18805/lr.v0iOF.3769

Duchene, O., Vian, J. F., & Celette, F. (2017). Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. Agriculture, Ecosystems & Environment, 240, 148–161.

Egamberdieva, D., Hua, M., Reckling, M., Wirth, S., & Bellingrath-Kimura, S. D. (2018). Potential effects of biochar-based microbial inoculants in agriculture. Environmental Sustainability, 1(1), 19–24.

Fekadu, E., Kibret, K., & Melese, A. (2019). Integrated acid soil management for growth, nodulation, and nutrient uptake of faba bean (Vicia faba L.) in Lay Gayint District, Northwestern Highlands of Ethiopia. International Journal of Agronomy, 2019, Article ID 7498518. https://doi.org/10.1155/2019/7498518

Gaw?da, D., Haliniarz, M., Wo?niak, A., & Harasim, E. (2018). Yield, seed quality and nodule formation of soybean under application of effective microorganisms. Acta Agrophysica, 25(1), 35–43. https://doi.org/10.31545/aagr0003

Glodowska, M., Schwinghamer, T., Husk, B., & Smith, D. (2017). Biochar-based inoculants improve soybean growth and nodulation. Agricultural Sciences, 8(9), 776–787. https://doi.org/10.4236/as.2017.89076

Han, Q., Ma, Q., Chen, Y., Tian, B., Xu, L., Bai, Y., & Li, X. (2020). Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. The ISME Journal, 14(8), 1915–1928.

Hassen, A., Bopape, F. L., & Sanger, L. K. (2016). Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. In D. Singh, H. Singh, & R. Prabha (Eds.), Microbial inoculants in sustainable agricultural productivity (pp. 23–36). Springer. https://doi.org/10.1007/978-81-322-2647-5_2

Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 60(4), 579–598. https://doi.org/10.1007/s13213-010-0117-1

Hunter, L. M., Twine, W., & Johnson, A. (2011). Adult Mortality and Natural Resource Use in Rural South Africa: Evidence From the Agincourt Health and Demographic Surveillance Site. Society & Natural Resources, 24(3), 256–275. https://doi.org/10.1080/08941920903443327

Jensen, E. S., Peoples, M. B., & Hauggaard-Nielsen, H. (2010). Faba bean in cropping systems. Field Crops Research, 115(3), 203–216. https://doi.org/10.1016/j.fcr.2009.10.008

John, K., & Molta, C. (2017). The role of liming in soil acidity management for sustainable crop production in Ethiopia. Ethiopian Journal of Environmental Studies & Management, 10(3), 377–385.

?Khan, M. N., Mobin, M., Abbas, Z. K., & Alamri, S. A. (2018). Fertilizers and their contaminants in soils, surface and groundwater. In M. N. Anjum, S. S. Gill, & N. Tuteja (Eds.), Enhancing cleanup of environmental pollutants, Volume 1: Biological approaches (pp. 17–41). Springer. https://doi.org/10.1007/978-3-319-64501-8_2

Krasova-Wade, T., Ndoye, I., Sarr, B., de Lajudie, P., & Neyra, M. (2003). Diversity of indigenous bradyrhizobia associated with three cowpea cultivars (Vigna unguiculata L. Walp.) grown under limited and favorable water conditions in Senegal (West Africa). African Journal of Biotechnology, 2(1), 13–22.

Kropp, B. R., & Langlois, C. G. (1990). Ectomycorrhizae in reforestation. Canadian Journal of Forest Research, 20(4), 438–451. https://doi.org/10.1139/x90-063

Kumari, B., Mallick, M. A., Solanki, M. K., Solanki, A. C., Hora, A., & Guo, W. (2019). Plant Growth Promoting Rhizobacteria (PGPR): Modern Prospects for Sustainable Agriculture. Plant Health under Biotic Stress, 109–127. https://doi.org/10.1007/978-981-13-6040-4_6

Lal, R. (2006). Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degradation & Development, 17(2), 197–209. https://doi.org/10.1002/ldr.744

Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems – A review. Mitigation and Adaptation Strategies for Global Change, 11(2), 395–419. https://doi.org/10.1007/s11027-005-9006-5

?Li, M., Li, Y., Zhao, Q., Xu, Y., Zhao, Q., & Zhang, M. (2017). Long-term organic farming manipulation on soil organic carbon, microbial biomass, and enzyme activities in tea plantation. Ecological Engineering, 99, 205–211.

Liang, J., Crowther, T. W., Picard, N., Wiser, S., Zhou, M., Alberti, G., & Reich, P. B. (2016). Positive biodiversity-productivity relationship predominant in global forests. Science, 354(6309), aaf8957. https://doi.org/10.1126/science.aaf8957

Lupwayi, N. Z., Haque, I., & Holl, F. B. (1998). Soil microbial biomass and mineralization of soil organic matter after seven years of nutrient depletion. Canadian Journal of Soil Science, 78(1), 107–114.

Ma, Y., Rajkumar, M., & Freitas, H. (2009). Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. Journal of Environmental Management, 90(2), 831–837. https://doi.org/10.1016/j.jenvman.2008.01.014

Mancinelli, R., & Sharman, L. (2015). The global market for soybean products: Price analysis and forecast for 2015-2020. Agricultural Economics Research Review, 28(1), 45–54.

?Martens, D. (2000). Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biology and Biochemistry, 32(3), 361–369. https://doi.org/10.1016/s0038-0717(99)00162-5

Maughan, M., & Boswell, G. (2013). Strategies for improving soil health and enhancing crop yields in acid soils. Agronomy Journal, 105(4), 945–957.

?Mousavi, S. R., & Esmaeili, A. (2011). The effect of phosphorus-solubilizing bacteria on the growth, yield, and nutrient uptake of wheat under field conditions. International Research Journal of Agricultural Science and Soil Science, 1(6), 147–152.

Nguyen, T., Tran, T., Nguyen, T., Hoang, N., Le, N., Le, T., & Le, Q. (2015). Effects of different organic fertilizers on growth, yield and quality of peanut (Arachis hypogaea L.) grown on degraded soil of Central Highlands, Vietnam. International Journal of Development Research, 5(6), 1–4.

Panwar, J. D. S., Shamim, A., Sindhu, S. S., Dadarwal, K. R., & Kumar, V. (2002). Phosphate-solubilizing bacteria as biofertilizers. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agro-ecosystem management (pp. 19–41). Springer.

Peoples, M. B., Herridge, D. F., & Ladha, J. K. (1995). Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant and Soil, 174(1–2), 3–28. https://doi.org/10.1007/BF00032239

Reilly, K. (2015). Restoring soil fertility and increasing yield in organic crop production. Journal of Organic Agriculture, 2(1), 13–25.

Rezaei, M., Shokouhifar, M., & Khademi, A. (2018). The application of biochar for reducing greenhouse gases emissions in agricultural systems. Journal of Cleaner Production, 178, 532–544. https://doi.org/10.1016/j.jclepro.2017.12.089

Rudrappa, L., Purakayastha, T. J., Singh, D., & Bhadraray, S. (2006). Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India. Soil and Tillage Research, 88(1–2), 180–192. https://doi.org/10.1016/j.still.2005.05.002

Schlesinger, W. H., & Bernhardt, E. S. (2013). Biogeochemistry: An analysis of global change (3rd ed.). Academic Press.

Shrestha, R. K., Ladha, J. K., & Gami, S. K. (2002). Integrated management of green manures and fertilizers for increased rice productivity in the sub-humid tropics. Agronomy Journal, 94(2), 471–479.

Singh, B. P., & Hatfield, J. L. (2015). Soil health and climate change: An overview. In B. P. Singh & J. L. Hatfield (Eds.), Soil health and climate change (pp. 1–13). Springer.

Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 22(3), 1315–1324. https://doi.org/10.1111/gcb.13139

Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., & Midgley, P. M. (Eds.). (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press.

Tan, Z., & Lal, R. (2005). Carbon sequestration potential estimates with changes in land use and tillage practices in Ohio, USA. Agriculture, Ecosystems & Environment, 111(1–4), 140–152. https://doi.org/10.1016/j.agee.2005.04.003

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260–20264. https://doi.org/10.1073/pnas.1116437108

Van Groenigen, J. W., Huygens, D., Boeckx, P., Kuyper, T. W., Lubbers, I. M., Rütting, T., & Groffman, P. M. (2015). The soil N cycle: New insights and key challenges. Soil, 1(1), 235–256. https://doi.org/10.5194/soil-1-235-2015

Verma, J. P., Yadav, J., Tiwari, K. N., & Lavakush. (2010). Impact of plant growth-promoting rhizobacteria on crop production. International Journal of Agricultural Research, 5(11), 954–983. https://doi.org/10.3923/ijar.2010.954.983

Downloads

Published

2024-06-30

How to Cite

Cablinan, A. (2024). Agrilime and Effective Microorganisms as Growth and Yield Enhancer of Soybean (Glycine max L.). Linker (The Journal of Emerging Research in Agriculture, Fisheries and Forestry), 4(1), 71–87. https://doi.org/10.65141/jeraff.v4i1.n6