Allelopathic Effects of Locally Cultivated Rice Varieties on Growth and Germination of Lettuce (Lactuca sativa L.) Using Sandwich and Seed Relay Assays
DOI:
https://doi.org/10.65141/jeraff.v5i1.n4Keywords:
allelopathy, germination percentage, percentage reduction, percent inhibition, germination timeAbstract
This study aimed to evaluate the allelopathic potential of locally cultivated rice varieties in Isabela province, focusing on their effects on the germination and growth of lettuce (Lactuca sativa L.). The research employed two bioassay methods: the sandwich method, where crushed rice seeds were layered between agar with lettuce seeds, and the relay seeding method, which involved germinating rice seeds in petri dishes before co-culturing them with lettuce seeds. Using a Completely Randomized Design with five replications across eleven treatments, data on germination percentage, root length, shoot length, and dry weight were collected and analyzed. The results indicated significant allelopathic potential. The sandwich method revealed a notable decrease in lettuce germination, while the relay seeding method exhibited higher germination rates. The findings demonstrated that different rice varieties possess varying degrees of allelopathic potential, with NSIC Rc210H showing the most significant inhibitory effects on lettuce germination and growth.
References
Alnjum, A., Hussain, U., Yousaf, Z., Khan, F., & Umer, A. (2010, April 4). Evaluation of alleopathic action of some selected medicinal plant on lettuce seeds by using sandwich method. Journal of Medicinal Plants Research, 4(7), 536–541. http://www.academicjournals.org/JMPR
Azmi, M., Abdullah, M. Z., & Fujii, Y. (2000). Exploratory study on allelopathic effect of selected Malaysian rice varieties and rice field weed species. Journal of Tropical Agriculture and Food Science, 28, 39–54.
Belz, R. (2007). Allelopathy in crop/weed interactions—An update. Pest Management Science, 63(4), 308–326. https://doi.org/10.1002/ps.1320
Cantila, A. Y., & Boholano, I. V. (2021). Genotype main effects and genotype × environment interaction (GGE) analysis for grain yield of the hybrid rice varieties under rain-prone environment. Science & Engineering Journal, 14(2), 297–304.
Chung, I., Ham, T., Cho, G., Kwon, S., Lee, Y., Seo, J., An, Y., Kim, S., Kim, S., & Lee, J. (2020). Study of quantitative trait loci (QTLs) associated with allelopathic trait in rice. Genes, 11(5), 470. https://doi.org/10.3390/genes11050470
Chung, I., Kim, J., & Kim, S. (2006). Evaluation of allelopathic potential and quantification of momilactone A, B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds. Journal of Agricultural and Food Chemistry, 54(7), 2527–2536. https://doi.org/10.1021/jf052796x
Ebana, K., Yan, W., Dilday, R., Namai, H., & Okuno, K. (2001). Analysis of QTL associated with the allelopathic effect of rice using water-soluble extracts. Breeding Science, 51, 47–51. https://doi.org/10.1270/jsbbs.51.47
Guo, Y., Lv, J., Dong, Y., & Dong, K. (2020). Allelopathy of wheat and faba bean extracts in an intercropping system. Research Square. https://doi.org/10.21203/rs.3.rs-57422/v1
Ho, T. L., Nguyen, T. T. C., Vu, D. C., Nguyen, N. Y., Nguyen, T. T. T., Phong, T. N. H., Nguyen, C. T., Lin, C. H., Lei, Z., Sumner, L. W., & Le, V. V. (2020). Allelopathic potential of rice and identification of published allelochemicals by cloud-based metabolomics platform. Metabolites, 10(6), 244. https://doi.org/10.3390/metabo10060244
Inderjit, & Weston, L. A. (2000). Are laboratory bioassays for allelopathy suitable for prediction of field responses? Journal of Chemical Ecology, 26(9), 2111–2118. https://doi.org/10.1023/a:1005516431969
Jabran, K. (2017). Rye allelopathy for weed control. In Manipulation of allelopathic crops for weed control (pp. 49–56). Springer. https://doi.org/10.1007/978-3-319-53186-1_6
Karim, S. M. R., Momin, A. M. T. A., & Begum, M. (2012). Allelopathic potential of selected rice varieties. African Journal of Biotechnology, 11(88), 15410–15414. https://doi.org/10.5897/AJB12.1293
Kato-Noguchi, H., & Kurniadie, D. (2022). Allelopathy and allelochemicals of Leucaena leucocephala as an invasive plant species. Plants, 11(13), 1672. https://doi.org/10.3390/plants11131672
Kato-Noguchi, H., Nitta, K., & Itani, T. (2013). Allelopathic potential of white, red and black rice cultivars. Plant Production Science, 16(4), 305–308. https://doi.org/10.1626/pps.16.305
Khan, A., Ahmed, M., Shaukat, S. S., & Noshad, S. (2018). Allelopathy: An overview. FUUAST Journal of Biology, 8(2), 331–350.
Kim, K.-U., & Shin, D.-H. (2003). The importance of allelopathy in breeding new cultivars. In R. Labrada (Ed.), Weed management for developing countries: Addendum 1. Food and Agriculture Organization of the United Nations.
Kong, C. H., Chen, X. H., Hu, F., & Zhang, S. Z. (2011). Breeding of commercially acceptable allelopathic rice cultivars in China. Pest Management Science, 67(9), 1100–1106. https://doi.org/10.1002/ps.2154
Kong, C., Hu, F., Wang, P., & Wu, J. (2008). Effect of allelopathic rice varieties combined with cultural management options on paddy field weeds. Pest Management Science, 64(3), 276–282. https://doi.org/10.1002/ps.1521
Li, J., Lin, S., Wang, Y., He, H., & Fang, C. (2022). Spatial-temporal distribution of allelopathic rice roots in paddy soil and its impact on weed-suppressive activity at the seedling stages. Frontiers in Plant Science, 13, 940218. https://doi.org/10.3389/fpls.2022.940218
Li, J., Lin, S., Zhang, Q., Zhang, Q., Hu, W., & He, H. (2019). Fine-root traits of allelopathic rice at the seedling stage and their relationship with allelopathic potential. PeerJ, 7, e7006. https://doi.org/10.7717/peerj.7006
Mai, N., & Xuan, T. (2025). A review on the utility potential of rice derived products in weed management. Weed Research. https://doi.org/10.1111/wre.12678
Mamiit, R. J., Yanagida, J., & Miura, T. (2021). Productivity hot spots and cold spots: Setting geographic priorities for achieving food production targets. Frontiers in Sustainable Food Systems, 5, 727484. https://doi.org/10.3389/fsufs.2021.727484
Masum, S., Hossain, M., Akamine, H., Sakagami, J., & Bhowmik, P. (2016). Allelopathic potential of indigenous Bangladeshi rice varieties. Weed Biology and Management, 16, 119–131. https://doi.org/10.1111/wbm.12103
Nath, S., Yumnam, P., & Deb, B. (2016). Allelopathic effect of lemon plant parts on the seedling germination and growth of lettuce and cabbage. International Journal of Plant Biology & Research, 4(1), 1054.
Okuno, K., & Ebana, K. (2003). Identification of QTL controlling allelopathic effects in rice: Genetic approaches to biological control of weeds. Japan Agricultural Research Quarterly, 37, 77–81. https://doi.org/10.6090/jarq.37.77
Olofsdotter, M. (2001). Rice—A step toward use of allelopathy. Agronomy Journal, 93(1), 3–8. https://doi.org/10.2134/agronj2001.9313
Ono Morikawa, C. I., Miyaura, R., Tapiay Figueroa, M. de L., Rengifo Salgado, E. L., & Fujii, Y. (2012). Screening of 170 Peruvian plant species for allelopathic activity by using the sandwich method. Weed Biology and Management, 12(1), 1–11.
Radek, M. (2017). Better Rice Initiative Asia – Fostering agriculture and rice marketing by improved education and rural advisory services (BRIA-FARMERS). Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. https://www.giz.de/en/worldwide/57075.html
Rahaman, F., Juraimi, A. S., Rafii, M. Y., Uddin, K., Hassan, L., Chowdhury, A. K., Karim, S. M. R., Rini, B. Y., Yusuff, O., Bashar, H. M. K., & Hossain, A. (2022). Allelopathic potential in rice – A biochemical tool for plant defence against weeds. Frontiers in Plant Science, 13, 1072723. https://doi.org/10.3389/fpls.2022.1072723
Raihan, I., Miyaura, R., Baki, B. B., & Fujii, Y. (2019). Assessment of allelopathic potential of goniothalamin allelochemical from Malaysian plant Goniothalamus andersonii J. Sinclair by sandwich method. Allelopathy Journal, 46(1), 57–72.
Serra, S., Shanmuganathan, R., & Becker, C. (2021). Allelopathy in rice: A story on momilactones, kin recognition, and weed management. Journal of Experimental Botany. https://doi.org/10.1093/jxb/erab084
Shehzad, T., & Okuno, K. (2020). Genetic analysis of QTLs controlling allelopathic characteristics in sorghum. PLOS ONE, 15(7), e0235896. https://doi.org/10.1371/journal.pone.0235896
Toyomasu, T., Usui, M., Sugawara, C., Otomo, K., Hirose, Y., Miyao, A., Hirochika, H., Okada, K., Shimizu, T., Koga, J., Hasegawa, M., Chuba, M., Kawana, Y., Kuroda, M., Minami, E., Mitsuhashi, W., & Yamane, H. (2014). Reverse-genetic approach to verify physiological roles of rice phytoalexins: Characterization of a knock-down mutant of OsCPS4 phytoalexin biosynthetic gene in rice. Physiologia Plantarum, 150(1), 55–62. https://doi.org/10.1111/ppl.12064
U.S. Department of Agriculture, Foreign Agricultural Service. (2025, February 13). Philippines: Food security emergency on rice declared in the Philippines (GAIN Report No. RP2025-0008). Global Agricultural Information Network (GAIN).
Villa, B., Secco, D., Tokura, L., Alovisi, A., Prior, M., Pilatti, M., Paz, C., Sutil, E., Ganascini, D., Rocha, E., Silva, L., Leite, L., Werncke, I., Nascimento, L., Pauly, M., Pauly, T., & Cruz, M. (2019). Study of plants with allelopathic potential in the initial development of lettuce. Journal of Agricultural Science, 11(7), 281. https://doi.org/10.5539/jas.v11n7p281
Wang, K., Wang, T., Ren, C., Dou, P., Miao, Z., Liu, X., Huang, D., & Wang, K. (2022). Aqueous extracts of three herbs allelopathically inhibit lettuce germination but promote seedling growth at low concentrations. Plants, 11(4), 486. https://doi.org/10.3390/plants11040486
Wu, H., Pratley, J., Lemerle, D., Haig, T., & An, M. (2001). Screening methods for the evaluation of crop allelopathic potential. The Botanical Review, 67(3), 403–415. https://doi.org/10.1007/BF02858100
Yan, Q., Tong, J., Li, S., & Peng, Q. (2023). Barnyard grass stress triggers changes in root traits and phytohormone levels in allelopathic and non-allelopathic rice. Biology, 12, 1074. https://doi.org/10.3390/biology12081074




