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Illegible handwriting in prescriptions remains a 
prevalent issue in fast-paced healthcare 
environments, contributing to misinterpretation and 
medication errors. Recognizing the importance of 
prescription readability, this study developed and 
deployed a real-time web application that classifies 20 
generic medicine names using a Convolutional Neural 
Networks (CNN) model, making the system more 
accessible for real-world use. A dataset of 2,100 
images was collected from public and private 
hospitals in Quezon City, and expanded to 6,720 

images using data augmentation techniques such as 
brightening, blurring, and noise reduction. Some 
medicines, such as Chlorpromazine and Hydroxyzine, 
showed slightly lower performance, suggesting the 
need for more diverse data. The results demonstrate 
the model’s reliability and potential for integration 
into hospital systems or pharmacy management 
software, offering a practical solution to reduce errors 
in medication dispensing. Future work could involve 
expanding the dataset and integrating the model with 
OCR or electronic health record (EHR) systems to 
support broader handwriting variations and real-time 
clinical workflows. 
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Introduction 
The rapid evolution of technology continues to impact many aspects of modern 

life, including healthcare. Among these innovations, computer vision has become 
increasingly important due to its ability to process and interpret visual data. As 
Parashar (2017) highlighted, computer vision has significantly influenced various 
domains, demonstrating notable reliability and accuracy. One of its crucial applications 
is in the recognition of handwritten text, an area that extends beyond traditional 
character recognition systems, which mainly translate images or documents into 
searchable formats (Memon et al., 2020). Handwriting recognition further enables 
machines to interpret and process the natural variability of human writing, a task that 

remains a critical challenge within intelligent document processing systems. 
A long-standing issue in healthcare is the legibility of handwritten medical 

prescriptions. Poor handwriting, particularly among doctors, has become a stereotype 
due to the demanding nature of their work. During peak hospital hours, doctors may 
write prescriptions hastily, leading to increased risks of medication errors. Ratanto et 
al. (2021) found that the workload of nurses significantly contributes to such errors, as 
they are often responsible for interpreting and administering prescriptions under 
pressure. Cerio et al. (2015) also emphasized that a majority of medication errors stem 
from the illegibility of doctors’ handwriting. Furthermore, the similarity in spelling and 
appearance among many medicine names—often derived from complex chemical 
components—adds another layer of risk in prescription interpretation (Tabassum et al., 
2022). These problems highlight a crucial need for reliable systems that can reduce 
interpretation errors and improve patient safety. 

Handwriting recognition (HWR), also known as handwritten text recognition 
(HTR), refers to the capability of computational systems to interpret handwritten input 
from various sources like paper, photos, and touchscreens (Prasantha, 2023). By 
transcribing handwritten documents into digital text, HWR holds substantial promise 
for applications in healthcare. Machine learning, particularly deep learning, has long 
been applied to enhance the quality and accuracy of healthcare systems (Shehab et al., 
2022). Kamble and Mane (2024) acknowledged the ongoing challenges in this domain, 
particularly the variability of individual handwriting styles—such as differences in 
character size, stroke, and form—which complicates standardization. As Shrawankar 

(2019) pointed out, the unstructured nature of human handwriting makes consistent 
recognition difficult, especially when cursive and print styles intermingle. 

In response to these challenges, Convolutional Neural Networks (CNNs) have 
emerged as a powerful solution for image processing and classification tasks, including 
handwriting recognition. These networks simulate the visual processing capabilities of 
the human brain through layered structures that identify and categorize image patterns 
(Taye, 2023). Several studies have demonstrated the potential of CNNs for interpreting 
handwritten medical text. Jain et al. (2021) presented a pipeline combining CNNs with 
bi-directional LSTM networks to convert handwritten prescriptions into readable digital 
text, while Fajardo et al. (2019) achieved 76% training accuracy and 72% validation 
accuracy using a Deep Recurrent Convolutional Neural Network (Deep R-CNN) for 
similar tasks. These successes underscore the promise of CNN-based systems in 
minimizing medication errors and improving efficiency in medical documentation. 

To translate these advancements into practical, user-friendly tools, this study 
proposed the deployment of the CNN model in a web-based application. Web 
applications, which operate through browsers and often use host-server architectures, 
are well-suited for real-time interaction and accessibility across platforms (OjaswiTech, 
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n.d.). Sotnik et al. (2023) emphasized the benefits of such platforms, including cross-
device compatibility and ease of access without requiring software installation. Thokala 
(2021) also noted that machine learning integrated into web applications can enhance 
user experience and operational efficiency. The use of modern JavaScript libraries such 
as React JS and TensorFlow.js further supports rapid front-end development and 
enables direct execution of machine learning models within browsers (Smilkov et al., 
2019). React JS simplifies the creation of dynamic and aesthetic interfaces (Bhalla et 
al., 2020), while TensorFlow.js facilitates real-time inference of models directly on the 
client-side. 

Despite the growing number of studies utilizing CNNs for handwriting recognition 

and the increasing feasibility of web-based deployments, there remains a gap in systems 
specifically tailored to address prescription legibility in real-time, particularly those 
focused on generic medicine names. This study aimed to bridge that gap by designing, 
developing, and evaluating a CNN-based handwriting recognition model for integration 
into a web application. The system is designed to classify 20 generic medicine names 
and provide relevant descriptions and indications. The research encompasses dataset 
expansion through data collection and augmentation, model training, front-end 
integration, and evaluation using precision, recall, accuracy, and F1-score. By targeting 
a real-world problem with direct clinical implications, this study contributes a practical 
and innovative solution to medication safety in healthcare. 
  

Methods 
This study aimed to develop a system that can accurately identify handwritten 

generic medicine names from prescription samples in real time. The main objective was 
to create a tool that can help health practitioners quickly and accurately recognize 
medication names, thereby reducing medication errors and improving service delivery. 
To achieve this, a step-by-step approach was followed—beginning with data collection 
and preparation, followed by the development and training of a machine learning model, 
the design of a web application for real-world use, and finally, testing and deployment 
of the application. 

 

 
 

Figure 1. Project Design for the Proposed System 
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Figure 1 shows the project design for the proposed system, which was planned 
and followed by the researchers in conducting this study. The whole development 
process is divided into four key phases: data preparation, model development, web app 
development, and testing and deployment. 
 
Installation of Tools and Libraries 

To ensure reproducibility and technical clarity, this section details the tools and 
libraries used in the study, including their specific version, installation method, 
function, and role within the development pipeline. This structured documentation 
aligns with best practices in deep learning and computer vision research and supports 

the reproducibility of experimental results. 

Albumentations 
 Albumentations (v1.4.0) is a fast and flexible image augmentation library 
designed to improve model generalization through a diverse set of 
transformations. It was used to apply operations such as brightness adjustment, 
Gaussian noise, motion blur, and flipping to augment the handwritten image 
dataset. This preprocessing step helps the model become more robust to visual 
variations in handwritten medicine names. It was installed using !pip install 
albumentations==1.4.0 and integrated within the data augmentation pipeline in 
Google Colab notebooks.  

Google Colab Pro 
Google Colab Pro provides an online hosted Jupyter Notebook environment 

with access to high-performance GPUs and TPUs, crucial for training 
computationally intensive deep learning models. No setup or local configuration 
is needed, and its seamless compatibility with Python-based libraries made it an 
ideal environment for developing the CNN-based classification system. It also 
allowed collaborative editing and persistent storage using Google Drive 
integration. 
 
Google Drive  

Google Drive was utilized as the primary cloud storage medium for 
handling datasets, storing trained model weights, and saving logs. It was 
mounted in the Colab environment using the command from Google.colab import 
drive, enabling read/write access to local project folders. This integration ensured 
that all project files were consistently backed up and accessible across sessions. 
 
Jupyter Notebook  

Jupyter Notebook (v6.5.4) served as the coding interface within Google 
Colab, providing a document-oriented environment for scripting, documenting, 
and executing Python code. It allowed for inline visualization of model metrics 
and supported rich text annotations, which facilitated experimentation and 
debugging during development. 

Keras 
 Keras (v2.13.1) is a high-level neural network API built on top of 
TensorFlow and is used to define and train the convolutional neural network 
architecture. It simplified model creation through intuitive APIs and abstracted 
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much of the underlying complexity, thereby accelerating development. It was 
installed via !pip install keras==2.13.1 and used throughout the training and 
evaluation phases. 

Matplotlib 
 Matplotlib (v3.7.1) is a plotting library used to visualize training curves, 
such as loss and accuracy per epoch. These plots provided insight into the 
learning dynamics of the model and helped in identifying issues like overfitting 
or underfitting. It was installed using !pip install matplotlib==3.7.1 and used in 
conjunction with Seaborn for enhanced visualizations. 

Node.js 
 Node.js (v18.x LTS) was used to support TensorFlow.js model inference 
outside the browser, particularly in server-side environments. It allowed for 
deploying the trained CNN model into a lightweight and scalable backend, useful 
for applications requiring real-time inference. It was downloaded from the official 
website and configured as part of the deployment stack. 

NumPy 
 NumPy (v1.24.3) is a core Python library for numerical computations, 
especially efficient array processing. It was used extensively in preprocessing 
steps such as image reshaping, normalization, and batch manipulation. It was 
installed via !pip install numpy==1.24.3 and integrated into both training and 
augmentation scripts. 

OpenCV 
 OpenCV (v4.7.0.72), or the Open-Source Computer Vision Library, 
provided image processing capabilities essential for preprocessing handwritten 
images. Operations like grayscale conversion, thresholding, and bounding box 
extraction were performed using this library to prepare the data before feeding it 
into the CNN. It was installed using !pip install opencv-python==4.7.0.72. 

Pandas 

 Pandas (v1.5.3) was used for handling structured data, particularly during 
dataset organization and metadata processing. It facilitated tasks like reading 
label information from CSV files and mapping class names to image files. It was 
installed via !pip install pandas==1.5.3 and used primarily in the data 
preparation phase. 

Random 
 The random module is part of Python’s standard library and was used to 
generate pseudo-random numbers for tasks such as shuffling datasets and 
applying stochastic augmentation operations. Its use ensured that each training 
session introduced slight variations in data ordering and transformations, aiding 
generalization. 

React.js 
 React.js (v18.2.0) was employed to develop the front-end interface of the 
web application, allowing users to interact with the trained model. It enabled the 
creation of a dynamic and responsive UI where users could upload handwritten 
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images and receive real-time predictions. It was installed using npm install 
react@18.2.0 and integrated into the deployment pipeline alongside 
TensorFlow.js. 

Seaborn 
 Seaborn (v0.12.2) is a statistical data visualization library built on top of 
Matplotlib. It was used to generate more refined and interpretable plots of 
performance metrics, aiding in comparative analysis and model evaluation. It was 
installed using !pip install seaborn==0.12.2 and often used in tandem with 
Matplotlib. 

Shutil 
 Shutil is a standard Python library used for high-level file operations, 
including copying and organizing image datasets into appropriate directory 
structures. It was especially useful during data augmentation, where new images 
needed to be saved into specific folders. No installation was required. 

TensorFlow 
 TensorFlow (v2.13.0) served as the primary deep learning framework, 
handling model construction, training, evaluation, and exporting. It offers a 
comprehensive ecosystem for machine learning and was compatible with both 
Keras and TensorFlow.js, streamlining the development-to-deployment process. 
Installed via !pip install tensorflow==2.13.0, it formed the backbone of the study’s 
model development pipeline. 

TensorFlow.js 
 TensorFlow.js (v4.15.0) is a JavaScript library that enables running 
trained machine learning models in a browser or server-side using Node.js. It 
allowed the CNN model to be deployed into a web-based environment, ensuring 
fast, private, and accessible inference without server dependency. It was installed 
using npm install @tensorflow/tfjs@4.15.0. 

Tqdm 

 Tqdm (v4.66.1) is a Python utility library that provides real-time progress 
bars for loops and processes. It was used to visually monitor training epochs, 
data preprocessing, and augmentation tasks. Installed via !pip install 
tqdm==4.66.1, it improved transparency and debugging efficiency during long-
running operations. 

Phase 1: Data Preparation 
The first phase of developing this project aim to collect a suitable dataset and 

prepare the collected data for use in the machine learning model training process. By 
achieving these objectives, the machine learning model will gain a solid foundation to 
build upon in the later phases of the project’s development. 
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Table 1. List of the Classes Used in the Study (Generic Medicine Names) 

Prescription Medication 

Prescription 1 Azathioprine 
Prescription 2 Ceftriaxone 
Prescription 3 Chlorpromazine 
Prescription 4 Ciprofloxacin 
Prescription 5 Clarithromycin 
Prescription 6 Dobutamine 
Prescription 7 Fluoxetine 
Prescription 8 Hydrochlorothiazide 
Prescription 9 Hydrocortisone 
Prescription 10 Hydroxyzine 
Prescription 11 Ibuprofen 
Prescription 12 Levothyroxine 
Prescription 13 Lorazepam 
Prescription 14 Metronidazole 
Prescription 15 Prednisolone 
Prescription 16 Quinine 
Prescription 17 Risperidone 
Prescription 18 Rituximab 
Prescription 19 Salbutamol 
Prescription 20 Tramadol 

 
To gather the necessary data, attending doctors, medical practitioners, and 

students were asked to write sample prescriptions with the medicine names listed in 
Table 1. The final dataset consisted of 2,100 labeled images, 105 images for each of the 
20 classes, which were then organized into separate folders by class name. Before 
training, all images were resized to 224x224 pixels, converted to grayscale, and 
processed with techniques such as gamma correction, contrast adjustment, noise 
removal, and Gaussian blur to enhance the visibility of the handwriting. To account for 
the small size of the dataset and to help the model learn more robust features, extensive 

data augmentation techniques were applied. These techniques included rotating, 
zooming, shifting, adding color variations, and adding noise to the images. After 
augmentation, the total number of images in the dataset increased to 6,720.  

 

 
 

Figure 2. Sample Images per Class Taken from the Dataset 
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Figure 3. Sample Images Taken from the Dataset After Splitting 
 
To avoid bias and imbalance, the dataset was split into training, validation, and 

testing sets in an 80:10:10 ratio, while retaining the proportions of each class. 
Furthermore, custom class weights were applied during training to help balance classes 
and avoid bias toward more frequently represented ones. 

Once the data had been prepared and processed, the next phase involved 
developing and training a CNN that could accurately identify medication names from 
the images of handwritten prescriptions. 
 
Phase 2: Model Development 
 This section of the study discusses how a CNN architecture was designed to 
create a generic medicine classification model, featuring 20 distinct classes from the 
dataset. For this study, a CNN architecture was implemented using the Keras API with 
a TensorFlow backend. The main objective was to create a classifier that could identify 
20 classes of medication accurately. The architecture starts with a convolution layer 

with 32 filters and a kernel size of 3×3, employing the Rectified Linear Unit (ReLU) as 
the activation function to output only positively activated signals. Subsequently, a max 
pooling layer reduces the dimensions of the feature maps while retaining the most 
important information.  

After flattening these feature maps, a fully connected layer with 128 neurons was 
added, followed by a dropout layer to help avoid overfitting. The final layer utilizes a 
softmax activation to produce a probability distribution across all 20 classes. 

The network was trained for 100 epochs with a batch size of 32, employing the 
Adam optimizer and categorical cross-entropy as the loss function. To avoid overfitting, 
early stopping was implemented, and the weights from the epoch with the best 
performance were preserved. 
 

f(x) - max(0,x) 
 

Equation 1. Relu Formula 
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The Rectified Linear Unit (ReLU) serves as the activation function in all hidden 
layers except the output layer. It operates by evaluating each input value: negative 
values are converted to 0, while positive values remain unchanged. This mechanism 
facilitates learning by allowing only significant positive values to propagate through the 
model. 

 
 

Equation 2. Softmax Formula 

The softmax activation function is applied to the CNN model’s final dense layer. 
This layer generates raw output logits for each of the 20 classes. The softmax function 
transforms these raw values into positive numbers and normalizes them to sum to one, 
effectively creating a probability distribution across the 20 classes. This normalization 
enables straightforward interpretation of outputs as the model’s confidence in each 
class. In practice, the class with the highest probability is selected as the model’s 
prediction, ensuring that outputs are meaningful and ready for comparison with true 
class labels during training. 

 
 

Equation 3. Categorical Cross-Entropy Loss Formula 

To train the CNN, the researchers used categorical cross-entropy as the loss 
function. In simple terms, for each sample, there is a true label indicating its correct 
class, and the model predicts a probability for each class. The loss function measures 
how far off the predicted probabilities are from the true labels. 

 
 

Figure 4. Visualization of the Confusion Matrix 
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After the training process of the model, it was then evaluated using four (4) key 
metrics utilizing a Confusion Matrix as seen in Figure 4. The accuracy, precision, recall, 
and F1-score were measured to determine whether the model was fit for usage.  
 

 
Equation 4. Formula for Precision 

 
Precision determines the percentage of predicted positive classes that were 

actually positive. 
 

 
Equation 5. Formula for Recall 

 
Recall, also known as True Positive Rate, measures the proportion of the actual 

positives that were correctly predicted by the classifier. 
 

 
 

Equation 6. Formula for F1- Score 
 

The F1-score is a singular metric that combines both precision and recall. F1-
score is usually used to obtain a balanced evaluation of both precision and recall. 
 

 
 

Equation 7. Formula for Accuracy 
 

Lastly, accuracy is the percentage of samples the classifier correctly identified.  
Once the trained model demonstrated strong performance, the next step was to 

implement it in a web application. The following phase focuses on developing a graphical 
interface that allows users to scan and identify medication from handwritten 
prescriptions in real time. 
 
Phase 3: Web Application Development 
 This phase involved designing and developing a user-friendly web application that 
can scan handwritten medication names in real time and instantly provide identification 
results. 
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Figure 5. Created UI of the Application for Desktop Devices 
 

 
 

Figure 6. Created UI of the Application for Mobile Devices 
 

Figure 5 and Figure 6 both showcase the different types of devices that can use 
the application. Using React and TypeScript, a lightweight and responsive UI was 
implemented to run on both desktop and mobile devices. The application utilizes the 
WebRTC API to activate the phone’s or computer’s camera and capture video frames in 
real time.  

Every second, a frame is resized to 224×224, converted into a tensor, normalized, 
and fed into the trained model. The frames captured by the device’s camera need to be 
resized in order to fit the requirements of the model for processing. The application then 
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displays the predicted medication’s name, confidence score, a brief description, and its 
main use directly on the screen. 

To maintain lightweight functionality and protect patient confidentiality, no data 
is stored or transmitted; all processing occurs directly in the browser. Furthermore, 
error handling mechanisms were implemented to account for cases where the camera 
fails or a medication is not recognized. Unit and integration testing were performed to 
validate the application’s functionality across different devices and conditions. 

With the application fully implemented, the final phase was testing and 
deployment. The following section describes how the application was evaluated to assess 
its accuracy and readiness for deployment. 

 
Phase 4: Testing and Deployment 

Phase 4 focused on testing and preparing the application for deployment. For this 
final phase, the application was thoroughly tested with various handwritten prescription 
samples to assess its accuracy and reliability. The web application was tested using 
various handwritten prescription samples to ensure it worked reliably and accurately. 
Basic security measures were implemented to align with health data standards (such 
as HIPAA), although the application does not store or send any patient information. The 
main purpose of the application is simply to scan, identify, and provide information 
about medication in real time. 

Once testing was complete, the application was deployed on Railway, a reliable 
service for hosting web applications. To help users quickly become comfortable with its 
use, clear instructions and a brief disclaimer were included on the website upon 
entering. 

 
Ethical Considerations 
 To maintain ethical standards and protect contributors’ confidentiality, all 
participating doctors were informed about the study and consented to provide samples 
of their handwriting. None of their identifying information was kept. The handwritten 
prescriptions were used exclusively for training, validation, and testing. Furthermore, 
the application itself does not store or track any patient data; it performs all operations 
directly in the browser and discards the photo immediately after processing. 

 
Results and Discussion 

 This chapter presents the results of the study’s implementation and evaluation. 
To thoroughly assess the performance of the trained classifier and its application, 
various graphs, tables, and a confusion matrix were generated. Each of these elements 
is explained in detail to provide a clear understanding of the model’s capabilities and 
limitations. Furthermore, this chapter aims to connect these results back to the 
research questions and goals, offering a more insightful view into how well the model 
performs in identifying handwritten medication names. 

To help thoroughly examine, analyze, and interpret the results of this study, 
graphs, tables, and other visual elements have been included. Each of these figures is 
explained in detail to provide a clear understanding of the findings. 
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Plotted Visual Graphs of the Results 
 

 
 

Figure 7. Training and Validation Accuracy Graph 
 

As shown in Figure 7, the training accuracy (blue line) starts off low but steadily 
improves, becoming more stable around the 40th epoch and eventually reaching over 
90%. This steady increase suggests that the model was learning effectively and making 
better predictions as training progressed. The validation accuracy (orange line) rises 
quickly within the first 10 epochs but shows some fluctuations afterward, indicating 
that the model may have struggled to generalize at certain points. However, after around 
the 50th epoch, the validation accuracy also stabilizes and stays consistently above 
90%. Despite the earlier variability, the close alignment of both training and validation 
accuracy by the end of training suggests that the model not only learned well from the 
training data but also generalized successfully to unseen validation samples. 

 

 
 

Figure 8. Training and Validation Loss Graph 
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Figure 8 displays the training and validation loss curves over the course of more 
than 50 epochs. The training loss (blue line) decreases steadily and smoothly, indicating 
that the model is effectively minimizing error during training. In contrast, the validation 
loss (orange line) shows noticeable spikes during the early stages, suggesting some 
initial instability, possibly due to variance in the validation set or challenges in 
generalizing early on. However, as training progresses, the validation loss also stabilizes 
and follows a similar downward trend. The relatively small gap between the training and 
validation loss toward the end of training indicates that the model is not overfitting and 
is learning to generalize well to unseen data. Overall, despite some early fluctuations, 
the model successfully reduced its prediction errors and produced more accurate results 

by the end of training. 
 

 
 

Figure 9. Class Confusion Matrix 
 

To further evaluate the classifier’s performance, a confusion matrix and a detailed 
classification report were generated. These metrics collectively reflect how accurately 
the model identifies each medication class and highlight areas where confusion occurs. 

The confusion matrix in Figure 9 depicts the performance of a generic medicine 
name classification model across 20 different medications. The diagonal elements 
represent correct predictions, showing high accuracy for most medications with values 
between 9–11 correct classifications per medication. Notable observations include 
above-average classification for several medications, including Chlorpromazine, 
Clarithromycin, Dobutamine, Fluoxetine, Levothyroxine, Rituximab, and Tramadol. 
Some confusion occurs between specific medication pairs: Azathioprine is occasionally 
misclassified as Ciprofloxacin; Ceftriaxone and Lorazepam show mutual confusion with 
Hydrocortisone; and Salbutamol exhibits the highest misclassification rate, being 
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confused with Tramadol in 2 cases. The lack of certainty between the mentioned classes 
arises because some of these medicines have similar handwriting patterns or 
abbreviations, reflecting a challenging, domain-specific problem in medical handwriting 
recognition. The overall pattern, however, suggests strong model performance with 
limited cross-medication confusion. 
 
Table 2. Model Classification Report 
 

Prescription precision recall F1-
score 

support 

Azathioprine 1.00 0.90 0.95 10 
Ceftriaxone 0.90 0.90 0.90 10 
Chlorpromazine 0.82 0.82 0.82 11 
Ciprofloxacin 0.90 0.90 0.90 10 
Clarithromycin 1.00 0.91 0.95 11 
Dobutamine 1.00 0.90 0.95 10 
Fluoxetine 1.00 0.91 0.95 11 
Hydrochlorothiazide 1.00 1.00 1.00 11 
Hydrocortisone 1.00 0.70 0.82 10 
Hydroxyzine 0.85 1.00 0.92 11 
Ibuprofen 0.92 1.00 0.96 11 
Levothyroxine 0.91 1.00 0.95 10 
Lorazepam 1.00 1.00 1.00 11 
Metronidazole 1.00 1.00 1.00 11 
Prednisolone 1.00 1.00 1.00 11 
Quinine 1.00 1.00 1.00 10 
Risperidone 0.83 1.00 0.91 10 
Rituximab 1.00 1.00 1.00 10 
Salbutamol 1.00 1.00 1.00 10 
Tramadol 0.92 1.00 0.96 11 
     
accuracy   0.95 210 

macro avg 0.95 0.95 0.95 210 

weighted avg 0.95 0.95 0.95 210 

Table 2 presents the precision, recall, F1-score, and support for each of the 20 
generic medicine name classes. The classification model achieved strong overall 
performance, with an accuracy of 94.76% (199 correct predictions out of 210 samples), 
and both macro and weighted average F1-scores of 0.95. Several medication classes, 
including Hydrochlorothiazide, Lorazepam, Metronidazole, Prednisolone, Quinine, 
Rituximab, and Salbutamol, performed consistently well. Achieving high scores across 
all three evaluation metrics indicates the model’s ability to reliably identify these 
medications. 
 On the other hand, Chlorpromazine and Hydrocortisone showed relatively lower 
performance. Chlorpromazine recorded a precision, recall, and F1-score of 0.82, while 
Hydrocortisone had a high precision (1.00) but lower recall (0.70), resulting in an F1-
score of 0.82. These findings suggest that certain medications may be more susceptible 
to misclassification, potentially due to similar handwriting characteristics or 
overlapping visual features. Overall, the model demonstrates reliable and balanced 
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performance across most medication classes, though there remains some room for 
improvement in distinguishing more challenging cases. 

Table 3. Model Performance Summary 

Model Performance Summary 

Test Accuracy 0.9476 
Test Loss 0.2455 
  
Total Test Samples 210 
Correct Predictions 199 (94.76%) 
Incorrect Predictions 11 (5.24%) 

 
Table 3 provides a concise overview of the model’s performance on the test set. It 

includes key metrics such as test accuracy, loss value, and the breakdown of correct 
versus incorrect predictions. The relatively low-test loss value of 0.2455 indicates that 
the model maintained a consistent level of prediction confidence, while the distribution 
of results highlighted its effectiveness across the evaluated samples. 

After analyzing the overall performance of the model through key metrics such 
as accuracy, precision, recall, and F1-score, the study now transitions to the next phase 
of evaluation, which involves the implementation of the trained classifier into a real-
world web application. This step aims to demonstrate not only how well the model 
performs under test conditions, but also how effectively it can be applied in practice to 
aid health practitioners in identifying medication names directly from handwritten 
prescriptions. The application was designed to enable health practitioners to scan and 
identify medication names directly from handwritten prescriptions. 
 
Web Application Results 
 

                 
          (10a)                       (10b) 
 

Figure 10. Screenshot of the Deployed Application on a Mobile Device 
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Figure 11. Screenshot of the Deployed Application on a Desktop Device 
 

 
(12a) 
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(12b) 

 
Figure 12. Screenshots of Results per Class 

 
Figures 10 and 11 illustrate the deployed application in use on both mobile and 

desktop platforms. The app leverages the device’s camera to capture a live video stream 
of handwritten prescriptions, allowing the trained classifier to perform real-time 
medication recognition. Upon detection, the application displays the predicted 
medication name along with its confidence score and primary use. 

To assess its practical effectiveness, the application was tested across a variety 
of medication classes. As shown in Figure 12, it was able to identify multiple medications 
correctly in real time. However, for optimal performance, a steady hand, a clear image, 
and several environmental factors such as good lighting were often necessary to help 
the classifier make accurate predictions. 
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Figure 13. Error Display with No Class Detected 
 

 To account for cases where the classifier fails to match a medication, the 
application displays an error message as shown in Figure 13.  This serves as a 
notification for the user to know that no medication was recognized.  
 Overall, the results demonstrate that the trained CNN performs strongly in 
identifying handwritten medication names from prescription samples, yielding a 94.76% 
accuracy and an F1-score of 0.95. The confusion matrix highlights areas of confusion, 
mainly between a few medication pairs, which may be addressed through additional 
training data or finer-tuned augmentation techniques. 

Furthermore, the deployment of the trained classifier into a lightweight, real-time 
application underscores its practicality for health practitioners in a busy pharmacy 
setting. Nevertheless, the results also suggest areas for future improvement, particularly 
in addressing cases of confusion and improving its flexibility against poor handwriting 
and low-resolution images. 
 

Conclusion and Future Works 
 This study addressed the persistent issue of illegible handwritten prescriptions, 
which often lead to medication errors in clinical settings. By developing a CNN-based 
system capable of recognizing 20 generic medicine names, the researchers successfully 

created and deployed a real-time web application using Google Colab and Railway 
Hosting Services. This lightweight browser-based tool allows users to accurately identify 
prescribed medications and access related information without storing sensitive data. 

The CNN model achieved strong classification performance, showing its practical 
potential in real-world use. This solution contributes to improving medication safety by 
reducing the risk of misreading handwritten prescriptions. It also supports the ongoing 
shift toward digital healthcare, especially in the use of AI for document processing and 
real-time clinical tools.  

The system helps healthcare professionals by improving accuracy in medication 
recognition, encouraging safer dispensing, and helping patients better understand their 
prescriptions. To improve its effectiveness, future work should expand the dataset to 
include more handwriting styles, integrate Optical Character Recognition (OCR) for more 
detailed text analysis, and optimize performance on mobile devices by using lighter 
models or compression techniques. 

Testing this application in real healthcare settings like hospitals, clinics, or 
pharmacies is necessary to confirm its reliability and usefulness. Doing so could reduce 

No Generic Medicine Detected 

The system doesn’t recognize the current object as any of the trained generic medicine classes. 

Please point the camera at a generic medicine.  

 

Confidence level: 35.59% (Threshold: 50%) 
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medication-related errors and improve the way prescriptions are processed in everyday 
healthcare. 
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