

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

17

Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health
Volume 2, Issue 1
 ISSN (Print): 3082-3692 ISSN (Online): 3082-3706
DOI: https://doi.org/10.65141/jessah.v2i1.n2

Real-Time CNN-Based Generic Medicine Name Classification for Prescription
Recognition

Espinas, Era B.1, Galvez, Leika Anne P.2, Merino, Ma. Yalaine S. J.3, Ramos, John
Michael C.4, Soriano, Ronan D.5
College of Informatics and Computing Studies, New Era University, Quezon City, 1107,
Philippines 1,2,3,4,5

 ebespinas@neu.edu.ph; leikaanne.galvez@neu.edu.ph;
ma.yalaine.merino@neu.edu.ph; johnmichael.ramos@neu.edu.ph;
ronan.soriano@neu.edu.ph

RESEARCH ARTICLE
INFORMATION

ABSTRACT

Received: April 16, 2025
Reviewed: May 18, 2025
Accepted: June 26, 2025
Published: June 30, 2025

 Copyright © 2025
by the Author(s). This open-
access article is distributed
under the Creative Commons
Attribution 4.0 International
License.

Illegible handwriting in prescriptions remains a
prevalent issue in fast-paced healthcare
environments, contributing to misinterpretation and
medication errors. Recognizing the importance of
prescription readability, this study developed and
deployed a real-time web application that classifies 20
generic medicine names using a Convolutional Neural
Networks (CNN) model, making the system more
accessible for real-world use. A dataset of 2,100
images was collected from public and private
hospitals in Quezon City, and expanded to 6,720

images using data augmentation techniques such as
brightening, blurring, and noise reduction. Some
medicines, such as Chlorpromazine and Hydroxyzine,
showed slightly lower performance, suggesting the
need for more diverse data. The results demonstrate
the model’s reliability and potential for integration
into hospital systems or pharmacy management
software, offering a practical solution to reduce errors
in medication dispensing. Future work could involve
expanding the dataset and integrating the model with
OCR or electronic health record (EHR) systems to
support broader handwriting variations and real-time
clinical workflows.

Keywords:

Computer vision, Convolutional Neural Networks
(CNN), medicine name classification, AI in medicine,
web application

mailto:ebespinas@neu.edu.ph
mailto:leikaanne.galvez@neu.edu.ph
mailto:ma.yalaine.merino@neu.edu.ph
mailto:johnmichael.ramos@neu.edu.ph
mailto:ronan.soriano@neu.edu.ph

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

18

Introduction
The rapid evolution of technology continues to impact many aspects of modern

life, including healthcare. Among these innovations, computer vision has become
increasingly important due to its ability to process and interpret visual data. As
Parashar (2017) highlighted, computer vision has significantly influenced various
domains, demonstrating notable reliability and accuracy. One of its crucial applications
is in the recognition of handwritten text, an area that extends beyond traditional
character recognition systems, which mainly translate images or documents into
searchable formats (Memon et al., 2020). Handwriting recognition further enables
machines to interpret and process the natural variability of human writing, a task that

remains a critical challenge within intelligent document processing systems.
A long-standing issue in healthcare is the legibility of handwritten medical

prescriptions. Poor handwriting, particularly among doctors, has become a stereotype
due to the demanding nature of their work. During peak hospital hours, doctors may
write prescriptions hastily, leading to increased risks of medication errors. Ratanto et
al. (2021) found that the workload of nurses significantly contributes to such errors, as
they are often responsible for interpreting and administering prescriptions under
pressure. Cerio et al. (2015) also emphasized that a majority of medication errors stem
from the illegibility of doctors' handwriting. Furthermore, the similarity in spelling and
appearance among many medicine names—often derived from complex chemical
components—adds another layer of risk in prescription interpretation (Tabassum et al.,
2022). These problems highlight a crucial need for reliable systems that can reduce
interpretation errors and improve patient safety.

Handwriting recognition (HWR), also known as handwritten text recognition
(HTR), refers to the capability of computational systems to interpret handwritten input
from various sources like paper, photos, and touchscreens (Prasantha, 2023). By
transcribing handwritten documents into digital text, HWR holds substantial promise
for applications in healthcare. Machine learning, particularly deep learning, has long
been applied to enhance the quality and accuracy of healthcare systems (Shehab et al.,
2022). Kamble and Mane (2024) acknowledged the ongoing challenges in this domain,
particularly the variability of individual handwriting styles—such as differences in
character size, stroke, and form—which complicates standardization. As Shrawankar

(2019) pointed out, the unstructured nature of human handwriting makes consistent
recognition difficult, especially when cursive and print styles intermingle.

In response to these challenges, Convolutional Neural Networks (CNNs) have
emerged as a powerful solution for image processing and classification tasks, including
handwriting recognition. These networks simulate the visual processing capabilities of
the human brain through layered structures that identify and categorize image patterns
(Taye, 2023). Several studies have demonstrated the potential of CNNs for interpreting
handwritten medical text. Jain et al. (2021) presented a pipeline combining CNNs with
bi-directional LSTM networks to convert handwritten prescriptions into readable digital
text, while Fajardo et al. (2019) achieved 76% training accuracy and 72% validation
accuracy using a Deep Recurrent Convolutional Neural Network (Deep R-CNN) for
similar tasks. These successes underscore the promise of CNN-based systems in
minimizing medication errors and improving efficiency in medical documentation.

To translate these advancements into practical, user-friendly tools, this study
proposed the deployment of the CNN model in a web-based application. Web
applications, which operate through browsers and often use host-server architectures,
are well-suited for real-time interaction and accessibility across platforms (OjaswiTech,

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

19

n.d.). Sotnik et al. (2023) emphasized the benefits of such platforms, including cross-
device compatibility and ease of access without requiring software installation. Thokala
(2021) also noted that machine learning integrated into web applications can enhance
user experience and operational efficiency. The use of modern JavaScript libraries such
as React JS and TensorFlow.js further supports rapid front-end development and
enables direct execution of machine learning models within browsers (Smilkov et al.,
2019). React JS simplifies the creation of dynamic and aesthetic interfaces (Bhalla et
al., 2020), while TensorFlow.js facilitates real-time inference of models directly on the
client-side.

Despite the growing number of studies utilizing CNNs for handwriting recognition

and the increasing feasibility of web-based deployments, there remains a gap in systems
specifically tailored to address prescription legibility in real-time, particularly those
focused on generic medicine names. This study aimed to bridge that gap by designing,
developing, and evaluating a CNN-based handwriting recognition model for integration
into a web application. The system is designed to classify 20 generic medicine names
and provide relevant descriptions and indications. The research encompasses dataset
expansion through data collection and augmentation, model training, front-end
integration, and evaluation using precision, recall, accuracy, and F1-score. By targeting
a real-world problem with direct clinical implications, this study contributes a practical
and innovative solution to medication safety in healthcare.

Methods
This study aimed to develop a system that can accurately identify handwritten

generic medicine names from prescription samples in real time. The main objective was
to create a tool that can help health practitioners quickly and accurately recognize
medication names, thereby reducing medication errors and improving service delivery.
To achieve this, a step-by-step approach was followed—beginning with data collection
and preparation, followed by the development and training of a machine learning model,
the design of a web application for real-world use, and finally, testing and deployment
of the application.

Figure 1. Project Design for the Proposed System

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

20

Figure 1 shows the project design for the proposed system, which was planned
and followed by the researchers in conducting this study. The whole development
process is divided into four key phases: data preparation, model development, web app
development, and testing and deployment.

Installation of Tools and Libraries

To ensure reproducibility and technical clarity, this section details the tools and
libraries used in the study, including their specific version, installation method,
function, and role within the development pipeline. This structured documentation
aligns with best practices in deep learning and computer vision research and supports

the reproducibility of experimental results.

Albumentations
 Albumentations (v1.4.0) is a fast and flexible image augmentation library
designed to improve model generalization through a diverse set of
transformations. It was used to apply operations such as brightness adjustment,
Gaussian noise, motion blur, and flipping to augment the handwritten image
dataset. This preprocessing step helps the model become more robust to visual
variations in handwritten medicine names. It was installed using !pip install
albumentations==1.4.0 and integrated within the data augmentation pipeline in
Google Colab notebooks.

Google Colab Pro
Google Colab Pro provides an online hosted Jupyter Notebook environment

with access to high-performance GPUs and TPUs, crucial for training
computationally intensive deep learning models. No setup or local configuration
is needed, and its seamless compatibility with Python-based libraries made it an
ideal environment for developing the CNN-based classification system. It also
allowed collaborative editing and persistent storage using Google Drive
integration.

Google Drive

Google Drive was utilized as the primary cloud storage medium for
handling datasets, storing trained model weights, and saving logs. It was
mounted in the Colab environment using the command from Google.colab import
drive, enabling read/write access to local project folders. This integration ensured
that all project files were consistently backed up and accessible across sessions.

Jupyter Notebook

Jupyter Notebook (v6.5.4) served as the coding interface within Google
Colab, providing a document-oriented environment for scripting, documenting,
and executing Python code. It allowed for inline visualization of model metrics
and supported rich text annotations, which facilitated experimentation and
debugging during development.

Keras
 Keras (v2.13.1) is a high-level neural network API built on top of
TensorFlow and is used to define and train the convolutional neural network
architecture. It simplified model creation through intuitive APIs and abstracted

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

21

much of the underlying complexity, thereby accelerating development. It was
installed via !pip install keras==2.13.1 and used throughout the training and
evaluation phases.

Matplotlib
 Matplotlib (v3.7.1) is a plotting library used to visualize training curves,
such as loss and accuracy per epoch. These plots provided insight into the
learning dynamics of the model and helped in identifying issues like overfitting
or underfitting. It was installed using !pip install matplotlib==3.7.1 and used in
conjunction with Seaborn for enhanced visualizations.

Node.js
 Node.js (v18.x LTS) was used to support TensorFlow.js model inference
outside the browser, particularly in server-side environments. It allowed for
deploying the trained CNN model into a lightweight and scalable backend, useful
for applications requiring real-time inference. It was downloaded from the official
website and configured as part of the deployment stack.

NumPy
 NumPy (v1.24.3) is a core Python library for numerical computations,
especially efficient array processing. It was used extensively in preprocessing
steps such as image reshaping, normalization, and batch manipulation. It was
installed via !pip install numpy==1.24.3 and integrated into both training and
augmentation scripts.

OpenCV
 OpenCV (v4.7.0.72), or the Open-Source Computer Vision Library,
provided image processing capabilities essential for preprocessing handwritten
images. Operations like grayscale conversion, thresholding, and bounding box
extraction were performed using this library to prepare the data before feeding it
into the CNN. It was installed using !pip install opencv-python==4.7.0.72.

Pandas

 Pandas (v1.5.3) was used for handling structured data, particularly during
dataset organization and metadata processing. It facilitated tasks like reading
label information from CSV files and mapping class names to image files. It was
installed via !pip install pandas==1.5.3 and used primarily in the data
preparation phase.

Random
 The random module is part of Python’s standard library and was used to
generate pseudo-random numbers for tasks such as shuffling datasets and
applying stochastic augmentation operations. Its use ensured that each training
session introduced slight variations in data ordering and transformations, aiding
generalization.

React.js
 React.js (v18.2.0) was employed to develop the front-end interface of the
web application, allowing users to interact with the trained model. It enabled the
creation of a dynamic and responsive UI where users could upload handwritten

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

22

images and receive real-time predictions. It was installed using npm install
react@18.2.0 and integrated into the deployment pipeline alongside
TensorFlow.js.

Seaborn
 Seaborn (v0.12.2) is a statistical data visualization library built on top of
Matplotlib. It was used to generate more refined and interpretable plots of
performance metrics, aiding in comparative analysis and model evaluation. It was
installed using !pip install seaborn==0.12.2 and often used in tandem with
Matplotlib.

Shutil
 Shutil is a standard Python library used for high-level file operations,
including copying and organizing image datasets into appropriate directory
structures. It was especially useful during data augmentation, where new images
needed to be saved into specific folders. No installation was required.

TensorFlow
 TensorFlow (v2.13.0) served as the primary deep learning framework,
handling model construction, training, evaluation, and exporting. It offers a
comprehensive ecosystem for machine learning and was compatible with both
Keras and TensorFlow.js, streamlining the development-to-deployment process.
Installed via !pip install tensorflow==2.13.0, it formed the backbone of the study’s
model development pipeline.

TensorFlow.js
 TensorFlow.js (v4.15.0) is a JavaScript library that enables running
trained machine learning models in a browser or server-side using Node.js. It
allowed the CNN model to be deployed into a web-based environment, ensuring
fast, private, and accessible inference without server dependency. It was installed
using npm install @tensorflow/tfjs@4.15.0.

Tqdm

 Tqdm (v4.66.1) is a Python utility library that provides real-time progress
bars for loops and processes. It was used to visually monitor training epochs,
data preprocessing, and augmentation tasks. Installed via !pip install
tqdm==4.66.1, it improved transparency and debugging efficiency during long-
running operations.

Phase 1: Data Preparation
The first phase of developing this project aim to collect a suitable dataset and

prepare the collected data for use in the machine learning model training process. By
achieving these objectives, the machine learning model will gain a solid foundation to
build upon in the later phases of the project's development.

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

23

Table 1. List of the Classes Used in the Study (Generic Medicine Names)

Prescription Medication

Prescription 1 Azathioprine
Prescription 2 Ceftriaxone
Prescription 3 Chlorpromazine
Prescription 4 Ciprofloxacin
Prescription 5 Clarithromycin
Prescription 6 Dobutamine
Prescription 7 Fluoxetine
Prescription 8 Hydrochlorothiazide
Prescription 9 Hydrocortisone
Prescription 10 Hydroxyzine
Prescription 11 Ibuprofen
Prescription 12 Levothyroxine
Prescription 13 Lorazepam
Prescription 14 Metronidazole
Prescription 15 Prednisolone
Prescription 16 Quinine
Prescription 17 Risperidone
Prescription 18 Rituximab
Prescription 19 Salbutamol
Prescription 20 Tramadol

To gather the necessary data, attending doctors, medical practitioners, and

students were asked to write sample prescriptions with the medicine names listed in
Table 1. The final dataset consisted of 2,100 labeled images, 105 images for each of the
20 classes, which were then organized into separate folders by class name. Before
training, all images were resized to 224x224 pixels, converted to grayscale, and
processed with techniques such as gamma correction, contrast adjustment, noise
removal, and Gaussian blur to enhance the visibility of the handwriting. To account for
the small size of the dataset and to help the model learn more robust features, extensive

data augmentation techniques were applied. These techniques included rotating,
zooming, shifting, adding color variations, and adding noise to the images. After
augmentation, the total number of images in the dataset increased to 6,720.

Figure 2. Sample Images per Class Taken from the Dataset

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

24

Figure 3. Sample Images Taken from the Dataset After Splitting

To avoid bias and imbalance, the dataset was split into training, validation, and

testing sets in an 80:10:10 ratio, while retaining the proportions of each class.
Furthermore, custom class weights were applied during training to help balance classes
and avoid bias toward more frequently represented ones.

Once the data had been prepared and processed, the next phase involved
developing and training a CNN that could accurately identify medication names from
the images of handwritten prescriptions.

Phase 2: Model Development
 This section of the study discusses how a CNN architecture was designed to
create a generic medicine classification model, featuring 20 distinct classes from the
dataset. For this study, a CNN architecture was implemented using the Keras API with
a TensorFlow backend. The main objective was to create a classifier that could identify
20 classes of medication accurately. The architecture starts with a convolution layer

with 32 filters and a kernel size of 3×3, employing the Rectified Linear Unit (ReLU) as
the activation function to output only positively activated signals. Subsequently, a max
pooling layer reduces the dimensions of the feature maps while retaining the most
important information.

After flattening these feature maps, a fully connected layer with 128 neurons was
added, followed by a dropout layer to help avoid overfitting. The final layer utilizes a
softmax activation to produce a probability distribution across all 20 classes.

The network was trained for 100 epochs with a batch size of 32, employing the
Adam optimizer and categorical cross-entropy as the loss function. To avoid overfitting,
early stopping was implemented, and the weights from the epoch with the best
performance were preserved.

f(x) - max(0,x)

Equation 1. Relu Formula

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

25

The Rectified Linear Unit (ReLU) serves as the activation function in all hidden
layers except the output layer. It operates by evaluating each input value: negative
values are converted to 0, while positive values remain unchanged. This mechanism
facilitates learning by allowing only significant positive values to propagate through the
model.

Equation 2. Softmax Formula

The softmax activation function is applied to the CNN model's final dense layer.
This layer generates raw output logits for each of the 20 classes. The softmax function
transforms these raw values into positive numbers and normalizes them to sum to one,
effectively creating a probability distribution across the 20 classes. This normalization
enables straightforward interpretation of outputs as the model's confidence in each
class. In practice, the class with the highest probability is selected as the model's
prediction, ensuring that outputs are meaningful and ready for comparison with true
class labels during training.

Equation 3. Categorical Cross-Entropy Loss Formula

To train the CNN, the researchers used categorical cross-entropy as the loss
function. In simple terms, for each sample, there is a true label indicating its correct
class, and the model predicts a probability for each class. The loss function measures
how far off the predicted probabilities are from the true labels.

Figure 4. Visualization of the Confusion Matrix

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

26

After the training process of the model, it was then evaluated using four (4) key
metrics utilizing a Confusion Matrix as seen in Figure 4. The accuracy, precision, recall,
and F1-score were measured to determine whether the model was fit for usage.

Equation 4. Formula for Precision

Precision determines the percentage of predicted positive classes that were

actually positive.

Equation 5. Formula for Recall

Recall, also known as True Positive Rate, measures the proportion of the actual

positives that were correctly predicted by the classifier.

Equation 6. Formula for F1- Score

The F1-score is a singular metric that combines both precision and recall. F1-
score is usually used to obtain a balanced evaluation of both precision and recall.

Equation 7. Formula for Accuracy

Lastly, accuracy is the percentage of samples the classifier correctly identified.
Once the trained model demonstrated strong performance, the next step was to

implement it in a web application. The following phase focuses on developing a graphical
interface that allows users to scan and identify medication from handwritten
prescriptions in real time.

Phase 3: Web Application Development
 This phase involved designing and developing a user-friendly web application that
can scan handwritten medication names in real time and instantly provide identification
results.

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

27

Figure 5. Created UI of the Application for Desktop Devices

Figure 6. Created UI of the Application for Mobile Devices

Figure 5 and Figure 6 both showcase the different types of devices that can use
the application. Using React and TypeScript, a lightweight and responsive UI was
implemented to run on both desktop and mobile devices. The application utilizes the
WebRTC API to activate the phone’s or computer’s camera and capture video frames in
real time.

Every second, a frame is resized to 224×224, converted into a tensor, normalized,
and fed into the trained model. The frames captured by the device’s camera need to be
resized in order to fit the requirements of the model for processing. The application then

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

28

displays the predicted medication’s name, confidence score, a brief description, and its
main use directly on the screen.

To maintain lightweight functionality and protect patient confidentiality, no data
is stored or transmitted; all processing occurs directly in the browser. Furthermore,
error handling mechanisms were implemented to account for cases where the camera
fails or a medication is not recognized. Unit and integration testing were performed to
validate the application’s functionality across different devices and conditions.

With the application fully implemented, the final phase was testing and
deployment. The following section describes how the application was evaluated to assess
its accuracy and readiness for deployment.

Phase 4: Testing and Deployment

Phase 4 focused on testing and preparing the application for deployment. For this
final phase, the application was thoroughly tested with various handwritten prescription
samples to assess its accuracy and reliability. The web application was tested using
various handwritten prescription samples to ensure it worked reliably and accurately.
Basic security measures were implemented to align with health data standards (such
as HIPAA), although the application does not store or send any patient information. The
main purpose of the application is simply to scan, identify, and provide information
about medication in real time.

Once testing was complete, the application was deployed on Railway, a reliable
service for hosting web applications. To help users quickly become comfortable with its
use, clear instructions and a brief disclaimer were included on the website upon
entering.

Ethical Considerations
 To maintain ethical standards and protect contributors’ confidentiality, all
participating doctors were informed about the study and consented to provide samples
of their handwriting. None of their identifying information was kept. The handwritten
prescriptions were used exclusively for training, validation, and testing. Furthermore,
the application itself does not store or track any patient data; it performs all operations
directly in the browser and discards the photo immediately after processing.

Results and Discussion

 This chapter presents the results of the study’s implementation and evaluation.
To thoroughly assess the performance of the trained classifier and its application,
various graphs, tables, and a confusion matrix were generated. Each of these elements
is explained in detail to provide a clear understanding of the model’s capabilities and
limitations. Furthermore, this chapter aims to connect these results back to the
research questions and goals, offering a more insightful view into how well the model
performs in identifying handwritten medication names.

To help thoroughly examine, analyze, and interpret the results of this study,
graphs, tables, and other visual elements have been included. Each of these figures is
explained in detail to provide a clear understanding of the findings.

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

29

Plotted Visual Graphs of the Results

Figure 7. Training and Validation Accuracy Graph

As shown in Figure 7, the training accuracy (blue line) starts off low but steadily
improves, becoming more stable around the 40th epoch and eventually reaching over
90%. This steady increase suggests that the model was learning effectively and making
better predictions as training progressed. The validation accuracy (orange line) rises
quickly within the first 10 epochs but shows some fluctuations afterward, indicating
that the model may have struggled to generalize at certain points. However, after around
the 50th epoch, the validation accuracy also stabilizes and stays consistently above
90%. Despite the earlier variability, the close alignment of both training and validation
accuracy by the end of training suggests that the model not only learned well from the
training data but also generalized successfully to unseen validation samples.

Figure 8. Training and Validation Loss Graph

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

30

Figure 8 displays the training and validation loss curves over the course of more
than 50 epochs. The training loss (blue line) decreases steadily and smoothly, indicating
that the model is effectively minimizing error during training. In contrast, the validation
loss (orange line) shows noticeable spikes during the early stages, suggesting some
initial instability, possibly due to variance in the validation set or challenges in
generalizing early on. However, as training progresses, the validation loss also stabilizes
and follows a similar downward trend. The relatively small gap between the training and
validation loss toward the end of training indicates that the model is not overfitting and
is learning to generalize well to unseen data. Overall, despite some early fluctuations,
the model successfully reduced its prediction errors and produced more accurate results

by the end of training.

Figure 9. Class Confusion Matrix

To further evaluate the classifier’s performance, a confusion matrix and a detailed
classification report were generated. These metrics collectively reflect how accurately
the model identifies each medication class and highlight areas where confusion occurs.

The confusion matrix in Figure 9 depicts the performance of a generic medicine
name classification model across 20 different medications. The diagonal elements
represent correct predictions, showing high accuracy for most medications with values
between 9–11 correct classifications per medication. Notable observations include
above-average classification for several medications, including Chlorpromazine,
Clarithromycin, Dobutamine, Fluoxetine, Levothyroxine, Rituximab, and Tramadol.
Some confusion occurs between specific medication pairs: Azathioprine is occasionally
misclassified as Ciprofloxacin; Ceftriaxone and Lorazepam show mutual confusion with
Hydrocortisone; and Salbutamol exhibits the highest misclassification rate, being

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

31

confused with Tramadol in 2 cases. The lack of certainty between the mentioned classes
arises because some of these medicines have similar handwriting patterns or
abbreviations, reflecting a challenging, domain-specific problem in medical handwriting
recognition. The overall pattern, however, suggests strong model performance with
limited cross-medication confusion.

Table 2. Model Classification Report

Prescription precision recall F1-
score

support

Azathioprine 1.00 0.90 0.95 10
Ceftriaxone 0.90 0.90 0.90 10
Chlorpromazine 0.82 0.82 0.82 11
Ciprofloxacin 0.90 0.90 0.90 10
Clarithromycin 1.00 0.91 0.95 11
Dobutamine 1.00 0.90 0.95 10
Fluoxetine 1.00 0.91 0.95 11
Hydrochlorothiazide 1.00 1.00 1.00 11
Hydrocortisone 1.00 0.70 0.82 10
Hydroxyzine 0.85 1.00 0.92 11
Ibuprofen 0.92 1.00 0.96 11
Levothyroxine 0.91 1.00 0.95 10
Lorazepam 1.00 1.00 1.00 11
Metronidazole 1.00 1.00 1.00 11
Prednisolone 1.00 1.00 1.00 11
Quinine 1.00 1.00 1.00 10
Risperidone 0.83 1.00 0.91 10
Rituximab 1.00 1.00 1.00 10
Salbutamol 1.00 1.00 1.00 10
Tramadol 0.92 1.00 0.96 11

accuracy 0.95 210

macro avg 0.95 0.95 0.95 210

weighted avg 0.95 0.95 0.95 210

Table 2 presents the precision, recall, F1-score, and support for each of the 20
generic medicine name classes. The classification model achieved strong overall
performance, with an accuracy of 94.76% (199 correct predictions out of 210 samples),
and both macro and weighted average F1-scores of 0.95. Several medication classes,
including Hydrochlorothiazide, Lorazepam, Metronidazole, Prednisolone, Quinine,
Rituximab, and Salbutamol, performed consistently well. Achieving high scores across
all three evaluation metrics indicates the model’s ability to reliably identify these
medications.
 On the other hand, Chlorpromazine and Hydrocortisone showed relatively lower
performance. Chlorpromazine recorded a precision, recall, and F1-score of 0.82, while
Hydrocortisone had a high precision (1.00) but lower recall (0.70), resulting in an F1-
score of 0.82. These findings suggest that certain medications may be more susceptible
to misclassification, potentially due to similar handwriting characteristics or
overlapping visual features. Overall, the model demonstrates reliable and balanced

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

32

performance across most medication classes, though there remains some room for
improvement in distinguishing more challenging cases.

Table 3. Model Performance Summary

Model Performance Summary

Test Accuracy 0.9476
Test Loss 0.2455

Total Test Samples 210
Correct Predictions 199 (94.76%)
Incorrect Predictions 11 (5.24%)

Table 3 provides a concise overview of the model’s performance on the test set. It

includes key metrics such as test accuracy, loss value, and the breakdown of correct
versus incorrect predictions. The relatively low-test loss value of 0.2455 indicates that
the model maintained a consistent level of prediction confidence, while the distribution
of results highlighted its effectiveness across the evaluated samples.

After analyzing the overall performance of the model through key metrics such
as accuracy, precision, recall, and F1-score, the study now transitions to the next phase
of evaluation, which involves the implementation of the trained classifier into a real-
world web application. This step aims to demonstrate not only how well the model
performs under test conditions, but also how effectively it can be applied in practice to
aid health practitioners in identifying medication names directly from handwritten
prescriptions. The application was designed to enable health practitioners to scan and
identify medication names directly from handwritten prescriptions.

Web Application Results

 (10a) (10b)

Figure 10. Screenshot of the Deployed Application on a Mobile Device

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

33

Figure 11. Screenshot of the Deployed Application on a Desktop Device

(12a)

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

34

(12b)

Figure 12. Screenshots of Results per Class

Figures 10 and 11 illustrate the deployed application in use on both mobile and

desktop platforms. The app leverages the device’s camera to capture a live video stream
of handwritten prescriptions, allowing the trained classifier to perform real-time
medication recognition. Upon detection, the application displays the predicted
medication name along with its confidence score and primary use.

To assess its practical effectiveness, the application was tested across a variety
of medication classes. As shown in Figure 12, it was able to identify multiple medications
correctly in real time. However, for optimal performance, a steady hand, a clear image,
and several environmental factors such as good lighting were often necessary to help
the classifier make accurate predictions.

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

35

Figure 13. Error Display with No Class Detected

 To account for cases where the classifier fails to match a medication, the
application displays an error message as shown in Figure 13. This serves as a
notification for the user to know that no medication was recognized.
 Overall, the results demonstrate that the trained CNN performs strongly in
identifying handwritten medication names from prescription samples, yielding a 94.76%
accuracy and an F1-score of 0.95. The confusion matrix highlights areas of confusion,
mainly between a few medication pairs, which may be addressed through additional
training data or finer-tuned augmentation techniques.

Furthermore, the deployment of the trained classifier into a lightweight, real-time
application underscores its practicality for health practitioners in a busy pharmacy
setting. Nevertheless, the results also suggest areas for future improvement, particularly
in addressing cases of confusion and improving its flexibility against poor handwriting
and low-resolution images.

Conclusion and Future Works
 This study addressed the persistent issue of illegible handwritten prescriptions,
which often lead to medication errors in clinical settings. By developing a CNN-based
system capable of recognizing 20 generic medicine names, the researchers successfully

created and deployed a real-time web application using Google Colab and Railway
Hosting Services. This lightweight browser-based tool allows users to accurately identify
prescribed medications and access related information without storing sensitive data.

The CNN model achieved strong classification performance, showing its practical
potential in real-world use. This solution contributes to improving medication safety by
reducing the risk of misreading handwritten prescriptions. It also supports the ongoing
shift toward digital healthcare, especially in the use of AI for document processing and
real-time clinical tools.

The system helps healthcare professionals by improving accuracy in medication
recognition, encouraging safer dispensing, and helping patients better understand their
prescriptions. To improve its effectiveness, future work should expand the dataset to
include more handwriting styles, integrate Optical Character Recognition (OCR) for more
detailed text analysis, and optimize performance on mobile devices by using lighter
models or compression techniques.

Testing this application in real healthcare settings like hospitals, clinics, or
pharmacies is necessary to confirm its reliability and usefulness. Doing so could reduce

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

36

medication-related errors and improve the way prescriptions are processed in everyday
healthcare.

References

[1] Bhalla, A., Garg, S., & Singh, P. (2020). Present day web-development using
ReactJS. International Research Journal of Engineering and Technology (IRJET),
7(5), 4410–4413. https://www.academia.edu/download/64560056/IRJET-
V7I5223.pdf

[2] Cerio, A. A. P., Mallare, N. A. L. B., & Tolentino, R. M. S. (2015). Assessment of
the legibility of the handwriting in medical prescriptions of doctors from public
and private hospitals in Quezon City, Philippines. Procedia Manufacturing, 3,
90–97. https://doi.org/10.1016/j.promfg.2015.07.112

[3] Fajardo, L. J., Sorillo, N. J., Garlit, J., Tomines, C. D., Abisado, M. B., Imperial,
J. M. R., Rodriguez, R. L., & Fabito, B. S. (2019, November 1). Doctor’s cursive
handwriting recognition system using deep learning. In 2019 IEEE 11th
International Conference on Humanoid, Nanotechnology, Information Technology,
Communication and Control, Environment, and Management (HNICEM) (pp. 1-6).
IEEE. https://doi.org/10.1109/hnicem48295.2019.9073521

[4] Jain, T., Sharma, R., & Malhotra, R. (2021). Handwriting recognition for
medical prescriptions using a CNN-Bi-LSTM model. In 2021 6th International
Conference on Inventive Computation Technologies (ICICT) (pp. 824-829). IEEE.
https://doi.org/10.1109/i2ct51068.2021.9418153

[5] Kamble, N. C. B., & Mane, N. K. T. (2024). A review on handwritten recognition
system using machine learning techniques. International Research Journal on
Advanced Engineering Hub (IRJAEH), 2(6), 1590–1599.
https://doi.org/10.47392/irjaeh.2024.0218

[6] Memon, J., Sami, M., Khan, R. A., & Uddin, M. (2020). Handwritten optical
character recognition (OCR): A comprehensive systematic literature review
(SLR). IEEE Access, 8, 142642–142668.
https://doi.org/10.1109/access.2020.3012542

[7] OjaswiTech. (n.d.). Web applications, their use, benefits and importance of web
applications today. OjaswiTech. Retrieved April 12, 2025, from
https://www.ojaswitech.com/web-design-technologies/web-applications

[8] Parashar, A. (2017). Importance of computer vision for human life. International
Journal of Advanced Research, 5(3), 2396–2399.
https://doi.org/10.21474/ijar01/3769

[9] Prasantha, S. (2023). Detailed survey of handwriting recognition using machine
learning algorithms. International Journal of Creative Research Thoughts, 11(1),
B704–B708.
https://www.researchgate.net/publication/377626296_Detailed_Survey_Of_Ha
ndwriting_Recognition_Using_Machine_Learning_Algorithms

https://www.academia.edu/download/64560056/IRJET-V7I5223.pdf
https://www.academia.edu/download/64560056/IRJET-V7I5223.pdf
https://doi.org/10.1016/j.promfg.2015.07.112
https://doi.org/10.1109/hnicem48295.2019.9073521
https://doi.org/10.1109/i2ct51068.2021.9418153
https://doi.org/10.47392/irjaeh.2024.0218
https://doi.org/10.1109/access.2020.3012542
https://www.ojaswitech.com/web-design-technologies/web-applications
https://doi.org/10.21474/ijar01/3769
https://www.researchgate.net/publication/377626296_Detailed_Survey_Of_Handwriting_Recognition_Using_Machine_Learning_Algorithms
https://www.researchgate.net/publication/377626296_Detailed_Survey_Of_Handwriting_Recognition_Using_Machine_Learning_Algorithms

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

37

[10] Ratanto, N., Hariyati, R. T. S., Mediawati, A. S., & Eryando, T. (2021). Workload
as the most important influencing factor of medication errors by nurses. The
Open Nursing Journal, 15(1), 204–210.
https://doi.org/10.2174/1874434602115010204

[11] Shehab, M., Abualigah, L., Shambour, Q., Abu-Hashem, M. A., Shambour, M.
K. Y., Alsalibi, A. I., & Gandomi, A. H. (2022). Machine learning in medical
applications: A review of state-of-the-art methods. Computers in Biology and
Medicine, 145, Article 105458.
https://doi.org/10.1016/j.compbiomed.2022.105458

[12] Shrawankar, U. (2019). Standardization of handwritten words to improve
readability. International Journal of Technology Diffusion, 10(3), 1–17.
https://doi.org/10.4018/ijtd.2019070101

[13] Smilkov, D., Thorat, N., Assogba, Y., Yuan, A., Kreeger, N., Yu, P., Zhang, K.,
Cai, S., Nielsen, E., Soergel, D., Bileschi, S., Terry, M., Nicholson, C., Gupta, S.
N., Sirajuddin, S., Sculley, D., Monga, R., Corrado, G., Viégas, F. B., &
Wattenberg, M. (2019, January 16). TensorFlow.js: Machine learning for the web
and beyond. arXiv. https://arxiv.org/abs/1901.05350

[14] Sotnik, S., Shakurova, T., & Lyashenko, V. (2023). Development features of
web-applications. International Journal of Academic and Applied Research
(IJAAR), 7(1), 79–85.
https://openarchive.nure.ua/entities/publication/0e1b6221-a2c0-4f68-b550-
53714391c127

[15] Tabassum, S., Abedin, N., Rahman, M. M., Rahman, M. M., Ahmed, M. T.,
Islam, R., & Ahmed, A. (2022). An online cursive handwritten medical words
recognition system for busy doctors in developing countries for ensuring
efficient healthcare service delivery. Scientific Reports, 12(1), 3840.
https://doi.org/10.1038/s41598-022-07571-z

[16] Taye, M. M. (2023). Theoretical understanding of convolutional neural network:
Concepts, architectures, applications, future directions. Computation, 11(3), 52.
https://doi.org/10.3390/computation11030052

[17] Thokala, V. S. (2021). Integrating machine learning into web applications for
personalized content delivery using Python. International Journal of Current
Engineering and Technology, 11(6), 1083–1087.
https://www.researchgate.net/profile/Vasudhar-Sai-Thokala-
2/publication/386523063_Integrating_Machine_Learning_into_Web_Application
s_for_Personalized_Content_Delivery_using_Python/links/67540547ad10b614ef
361ee9/Integrating-Machine-Learning-into-Web-Applications-for-Personalized-
Content-Delivery-using-Python.pdf

Acknowledgment
 The authors would like to express their sincere appreciation to all those who
supported and contributed to the successful completion of this study.

https://doi.org/10.2174/1874434602115010204
https://doi.org/10.1016/j.compbiomed.2022.105458
https://doi.org/10.4018/ijtd.2019070101
https://arxiv.org/abs/1901.05350
https://openarchive.nure.ua/entities/publication/0e1b6221-a2c0-4f68-b550-53714391c127
https://openarchive.nure.ua/entities/publication/0e1b6221-a2c0-4f68-b550-53714391c127
https://doi.org/10.1038/s41598-022-07571-z
https://doi.org/10.3390/computation11030052
https://www.researchgate.net/profile/Vasudhar-Sai-Thokala-2/publication/386523063_Integrating_Machine_Learning_into_Web_Applications_for_Personalized_Content_Delivery_using_Python/links/67540547ad10b614ef361ee9/Integrating-Machine-Learning-into-Web-Applications-for-Personalized-Content-Delivery-using-Python.pdf
https://www.researchgate.net/profile/Vasudhar-Sai-Thokala-2/publication/386523063_Integrating_Machine_Learning_into_Web_Applications_for_Personalized_Content_Delivery_using_Python/links/67540547ad10b614ef361ee9/Integrating-Machine-Learning-into-Web-Applications-for-Personalized-Content-Delivery-using-Python.pdf
https://www.researchgate.net/profile/Vasudhar-Sai-Thokala-2/publication/386523063_Integrating_Machine_Learning_into_Web_Applications_for_Personalized_Content_Delivery_using_Python/links/67540547ad10b614ef361ee9/Integrating-Machine-Learning-into-Web-Applications-for-Personalized-Content-Delivery-using-Python.pdf
https://www.researchgate.net/profile/Vasudhar-Sai-Thokala-2/publication/386523063_Integrating_Machine_Learning_into_Web_Applications_for_Personalized_Content_Delivery_using_Python/links/67540547ad10b614ef361ee9/Integrating-Machine-Learning-into-Web-Applications-for-Personalized-Content-Delivery-using-Python.pdf
https://www.researchgate.net/profile/Vasudhar-Sai-Thokala-2/publication/386523063_Integrating_Machine_Learning_into_Web_Applications_for_Personalized_Content_Delivery_using_Python/links/67540547ad10b614ef361ee9/Integrating-Machine-Learning-into-Web-Applications-for-Personalized-Content-Delivery-using-Python.pdf

Volume 2, Issue 1 Isabela State University Linker:

Journal of Education, Social Sciences, and Allied Health

38

To their families, the authors are truly grateful for the constant love,
encouragement, and patience throughout this journey. To their friends, they extend
heartfelt thanks for their understanding, support, and help during challenging phases
of the research.

The authors also thank the professors of New Era University for their valuable
guidance and expertise, which greatly shaped this study. They are sincerely appreciative
of the doctors, medical practitioners, and students who provided handwritten
prescription samples, making this research possible.

Lastly, the authors are thankful to the Almighty God for the blessings, strength,
and direction that made the completion of this project a reality.

Conflict of Interest

 The authors declare that there are no conflicts of interest regarding the
publication of this paper.

Artificial Intelligence (AI) Declaration Statement
Researchers hereby disclose the extent of the use of artificial intelligence (AI)

tools, specifically ChatGPT, during the writing of the manuscript; this tool was used
solely to check grammatical errors and improve grammatical structure.

