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This research addresses the challenges in quality
assurance (QA) for low-volume Printed Circuit
Board and Assembly (PCBA) production, where
manual inspection often leads to inconsistencies,
limited traceability, and delays. Analyzing defect
trends from 2019 to 2024 across six suppliers,
the study identified common issues such as
missing components, misalignment, and solder
defects. This defect analysis introduces the
concept of developing a low-cost, portable, Al-
driven PCBA QA inspection system that would
utilize a high-resolution microscope, Python-
based computer vision, and object detection tools
like YOLO to provide an affordable, scalable, and
customizable solution ideal for small-scale
manufacturers, SMEs, and research
environments. This conceptual system is
intended to enhance inspection efficiency,
accuracy, and traceability while promoting
sustainable engineering practices. Future
research would focus on developing and
implementing this system, including Al-based
defect classification and conducting pilot studies
to validate its performance in real-world settings.
This system has significant implications for SMEs
in electronics manufacturing, providing an
accessible, cost-effective solution to improve
product quality and support the digital
transformation of manufacturing operations.
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Introduction

Quality assurance (QA) in Printed Circuit Board and Assembly (PCBA) production
is crucial, particularly for small-scale manufacturers involved in engineering
development board prototyping and low-volume batch production. The inspection
process plays a vital role in determining whether a product meets quality standards,
leading to its acceptance or rejection (Sundaram et. al., 2023). Large manufacturers
often rely on high-speed Automated Optical Inspection (AOI) systems to detect solder
defects, missing components, and polarity issues. However, such systems can be
prohibitively expensive for startups and small-to-medium enterprises (SMEs). With
limited resources, smaller manufacturers, especially those in low-cost labor markets,
find it challenging to invest in AOI technology due to its high upfront and maintenance
costs (Kerstin, 2023). As a result, many low-volume producers continue to use manual
visual inspection, which, while more accessible, is labor-intensive, inconsistent, and
prone to human error (Goti, 2025). Furthermore, manual inspection lacks traceability,
contributing to variability in judgment (Ebayyeh et. al., 2020) and increasing the risks
of product quality issues (Arumugam, 2025).

For companies like Antech Enviro Philippines, which manage both in-house and
offshore PCBA production, the absence of a standardized, automated inspection process
exacerbates these risks. Offshore-produced boards must undergo manual inspection
before shipment, relying on softcopy images and Certificates of Compliance (COCs) for
validation. Internally produced prototypes and test boards also require inspection, but
the manual approach significantly slows down iteration cycles and adds operational
overhead.

Despite the growing use of Al-powered visual inspection systems driven by cost
reductions in embedded imaging solutions (Acuity Vision, 2025), these technologies are
largely tailored for large-scale production. They often demand specialized equipment,
infrastructure, and trained personnel, making them unsuitable for small-scale
operations. There remains a significant gap in the development of cost-effective,
portable, and scalable inspection solutions that small electronics manufacturers can
adopt without the need for high-end industrial resources. This research aimed to
address this gap, firstly, by providing a unique dataset of PCBA defects that sheds light
on persistent quality issues in low-volume production contexts. Secondly, it introduces
a sustainable, smart QA system that is both affordable and adaptable to low-volume
production environments, offering a solution that enhances inspection time, accuracy,
and traceability without requiring expensive infrastructure, subsequently addressing
UN SDGs 9 and 12.

Methods

Research Design

This study adopted a mixed-methods approach combining quantitative analysis
of defect trends with a proposed design and development of a low-cost, portable smart
QA inspection system for PCBA. The quantitative part of the study was based on a six-
year inspection data analysis in which recurring defects were identified, while the design
part focused on conceptualizing and designing; no functional testing or performance
evaluation was conducted at this stage. Instead, the study focused on system
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architecture, workflow design, and tool integration, laying the groundwork for future
testing and validation.

Locale of the Study

This study was conducted in the Test and Development Division of Antech Enviro
Philippines, an engineering solutions provider located in First Cavite Industrial Estate,
Dasmarinas, Cavite. The company handles both local in-house PCBA prototyping as
well as offshore production from PCBA partners. Its dual operations, characterized by
small-batch and custom assemblies with varied inspection workflows, provided an ideal
setting for the development and implementation of a flexible inspection system for
resource-limited environments.

Research Instruments
The research utilized the following instruments:

1. Incoming and Outgoing QA Inspection Logs (2019-2024): Inspection reports from
6 PCBA partners were compiled and categorized by defect type, quantity of
affected boards, and assembly method (manual, automated, semi-automated). A
total of 18 defect types were analyzed.

2. Data Visualization Tools: Microsoft Excel and Microsoft Power Bl were employed
to prepare, analyze, and visualize the defect trends. These tools supported the
creation of dynamic dashboards and trend-based insights that directly influenced
system requirements and features.

3. System Design Artifacts: The design of the proposed Portable Smart Inspection
System was guided by literature, trend analyses, and current manual inspection
processes. Key design elements comprised of live camera mode with real-time
inference and annotation; batch upload mode for image-based inspection;
detection of PCBA defects using pretrained or custom YOLO; export options for
JSON, CSV, annotated images, and log files; and lightweight and portable
application suitable for field or office use.

Data Collection Procedure

Historical defect data spanning from 2019 to 2024 were gathered from the QA
archives of Antech Enviro Philippines. Each record included year of inspection, supplier
identifier (A to F), number of boards inspected, and defect counts categorized by
fabrication and assembly method.

The compiled data were organized in Excel and loaded into Power BI for analysis,
which allowed investigation of which defect types were most prevalent and which
assembly methods were most prone to error, thus suggesting the inspection system’s
key features and focus areas.

Data Preprocessing and Analysis

Data cleaning and preprocessing were performed using Microsoft Excel to
standardize defect categories according to fabrication and assembly type (manual,
automated, or semi-auto), ‘1’ for defect presence and ‘O’ for absence, and normalize
terminology between suppliers. Missing or ambiguous entries were reconciled through
cross-checking with the original inspection forms.

Quantitative data were analyzed through trend visualization, enabling the
identification of high-frequency defect types and their variations over time. Graphs,
heatmaps, and dashboards were used to track annual defect rates by assembly type,
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prioritize defects according to their frequency and criticality, illustrate defect
concentration across suppliers and years, and determine quality patterns specific to
PCBA partners/suppliers

These insights contributed to the functional design of the system, emphasizing
the importance of component presence checks, solder and PCB defect detection, and
the provision of batch documentation support. Power BI was utilized for defect filtering
and comparative analysis, which suggested the intended usability and reporting outputs
of the system.

YOLO-Based Detection Model Preparation
Although the actual model training was not conducted at this stage, below is the
preparation process. This includes:

1. Dataset planning and Al-powered computer vision integration using Roboflow for
dataset versioning, annotation standardization (YOLO txt format), dataset
augmentation (flip, rotate, brightness adjustment), train/validation, and dataset
export to YOLO formats (Ahmed, 2024).

2. Image preprocessing and annotation procedures that will include capturing high-
resolution top and bottom view images, annotating defects using bounding boxes,
applying augmentations to simulate real-world inspection conditions, and
standardizing label schemas based on defect categories (Roboflow, Inc., 2024).

3. The proposed model training configuration will include batch size, learning rate,
epochs, and image size (Torres, 2024).

Ethical Considerations

All historical defect data were used with permission from Antech Enviro
Philippines Inc. All data used were anonymized to ensure that neither PCBA partner
names nor specific personnel were identifiable. Human participants were not involved,
and no sensitive or proprietary technical designs were disclosed.

The design of the proposed system was intended to enhance the existing QA
inspection process rather than replace manual inspection staff, aligning with
sustainable engineering practices that emphasize human-technology collaboration.

Results and Discussion

This section presents the findings of the study, derived from the six-year (2019-
2024) PCBA defect dataset collected from six PCBA partner/suppliers (A-F). The analysis
aligns with the research objectives by identifying critical defect patterns, evaluating
defect prevalence by assembly method, and informing the conceptualization of the
proposed Portable Smart PCBA QA Inspection System. The discussion integrates
literature support, interprets observed trends, and explores broader implications and
applications of the results.

Key Findings from Defect Trend Analysis

An analysis of defect data revealed significant patterns that recommended the
design requirements of a more sustainable and efficient inspection solution. The dataset
included over 3,000 board inspections and documented 18 distinct fabrication and
assembly defect types, such as uneven solder masks/plating, broken traces, scratches
on boards and pads, component not installed, wrong orientation, polarity,
misalignment, and tombstoning. These were classified according to their source:
manual, automated, and semi-automated processes and fabrication issues. PCB
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fabrication cosmetic issues, including uneven/discolored solder masks, scratches on
boards, and broken traces, are among the highest defect concerns. But certainly, the
other PCB quality issues like exposed copper, dents on pads, and uneven plating should
not be ignored, as these defects pose functionality considerations.

Assemblies with manual processes, like Manual and Semi-automated, accounted
for the highest concentration of critical defects, where reliance on human inspection
and manual soldering remains prevalent. By contrast, automated lines reported fewer
errors but still experienced issues related to component orientation, polarity, and
alignment. Moreover, there is an upward and downward trends in fabrication and
assembly-related issues since the annual production output of Antech Enviro
Philippines depends on the volume of orders received each year.

Microsoft Power BI was used for the visualization, which enabled the generation
of the trend charts, defect frequency heatmaps, and assembly-type-specific breakdowns,
which collectively supported the identification of defect patterns. These insights helped
define the functional requirements for a portable, technology-driven quality assurance
system designed for low-volume environments. Table 1 summarizes the number of PCB
fabrication defects recorded per supplier. C, D, and A are the top 3 suppliers with the
highest fabrication defects.

Table 1. Summary of Supplier PCB Fabrication Defects (2019-2024)

Supplier Broken Expose Scratches/ Scratches Uneven Uneven/  Total

Traces Copper Dentson on Plating Discolored

Pads Boards Solder

mask
C 75 57 62 78 60 76 408
D 56 71 66 69 54 67 383
A 54 46 48 46 47 60 301
E 52 30 32 46 46 45 251
F 39 30 24 48 42 48 231
B 38 45 39 38 31 36 227

Total 314 279 271 325 280 332 1801

Table 2 summarizes the number of PCB Assembly defects recorded per supplier.
D, C, and A are the top 3 suppliers with the highest assembly defects.

Table 2. Summary of Supplier PCB Assembly Defects (2019-2024)

Supplier Uninstalled Flipped/ Lacking Misaligned No Pem
Component Inverted Mechanical Components nuts
Component Screws
D 48 59 52 53 43
C 55 54 69 48 42
A 37 48 38 47 43
E 43 39 40 38 26
F 37 37 25 38 29
B 19 33 28 27 26
Total 239 270 252 251 209
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Supplier Shorted Tombs Wrong/ Wrong Pinl Wrong  Total

Pins toning Mismatched Orientation Polarity
MPN (+/-)

D 71 80 47 81 63 653
C 64 74 41 75 60 630
A 52 61 49 52 56 522
E 56 69 40 53 57 506
F 42 47 31 48 44 415
B 47 33 31 36 34 347

332 364 239 345 314 3073

Visual Analysis and Interpretation

Visual dashboards created using Power BI provided clear insights into the
distribution and recurrence of defects. Figures 1 and 2 show the annual PCB fabrication
and assembly defect trends from 2019 to 2024.
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Figure 1. PCB Fabrication Defects Trend (2019-2024)
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Figure 2. PCB Assembly Defects Trend (2019-2024)
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Figure 3 shows the total PCB fabrication defect count comparison by supplier
from 2019 to 2024.
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Figure 3. PCB Fabrication Defects Supplier Comparison (2019-2024)

Figure 4 shows the total PCB assembly defect count comparison by supplier
across assembly types.
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Figure 4. PCB Assembly Defects Comparison by Supplier and Assembly Type
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Figure 5 shows which PCB fabrication defect types dominate per year.
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Figure 5. PCB Fabrication Defect Types Distribution by Year

Figure 6 shows which PCB Assembly defect types dominate per year.
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Implications of Defect Pattern Analysis for PCBA Manufacturers

The analysis implies several broader implications that directly inform quality
control, process improvement, and the need for advanced inspection technologies in
low-volume electronic industries. Recurring PCB fabrication concerns point to
weaknesses in supplier capability and process stability, copper and surface plating, and
masking treatment controls. Assembly-caused defects reveal the limitations of purely
manual inspection, which is prone to fatigue, visual checking inconsistency, and limited
traceability. The increasing complexity of PCBA designs suggests that visual inspection
must adapt to handle smaller components, tighter tolerances, and high-density boards.

These implications align with global studies that demand digital transformation
and low-cost automation in resource-constrained SMEs (Koumas et. al., 2021). Several
studies, such as Modrak et al. (2025) and Park et. al. (2022), highlight the gap between
high-end inspection smart manufacturing and the limited capabilities of small-scale
manufacturers, further supporting the need for a portable, scalable solution.

Design Implications for the Proposed Inspection System

The observed defect trends directly influenced the architecture and features of
the Portable Smart QA Inspection System. Frequent assembly defects like solder shorts,
misalignment, polarity errors, and missing or uninstalled components guided the
inclusion of a YOLO-based object detection model (Bandukwala et al., 2022). PCB
fabrication defects, such as broken traces, uneven plating, scratches, and exposed
copper, stressed the need for integration of a camera-based computer vision image
capture and tagging. Variability among suppliers justified the design of a centralized
logging system capable of tracking defect patterns over time, thus addressing the
traceability and documentation gaps highlighted in the defect records.

Development of the Portable Smart QA Inspection System

In response to the trends identified through defect analysis, the study proposed
the development of a Portable Smart QA Inspection System, which is a compact, cost-
effective platform designed to augment or partially automate the visual inspection of
PCBAs in small manufacturing operations. This system will be designed with
sustainability, affordability, and traceability as guiding principles.

Several alternative low-cost automated inspection solutions have been explored
in recent studies, like the use of Raspberry Pi microcontroller boards employed with
cameras and classical computer vision methods; however, inconsistent lighting, limited
image detection, and low accuracy for micro-defects have been their limitations. The
proposed YOLO-based model will provide a significant performance upgrade through
deep-learning (Adeyemi, 2024) feature extraction and Roboflow-assisted (Al) dataset
management (Ciagla, 2022), allowing the detection of complex, non-uniform defects.

System Architecture and Components
The proposed system consists of the following core components:
» A high-resolution USB camera or microscope mounted on a foldable rig, providing
adjustable focus and consistent lighting;
= A standard laptop or desktop computer, running an open-source software suite
developed in Python using OpenCV for real-time image analysis and defect
highlighting;
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» A graphical user interface (GUI) that allows inspectors to capture board images,
mark defect areas, select defect types, and automatically generate inspection
reports; and

» Local file storage or optional cloud export for archiving inspection data, annotated
images, and summary reports per batch or board ID.

The software is modular, allowing future upgrades to include Al-based
classification, barcode/QR integration, or database connectivity.

Proposed Future Testing and Validation
To ensure system reliability and technical robustness, future evaluations will
implement the following validation strategies:

1. The inspection system will undergo functional testing to ensure GUI
elements, image capture, defect detection, and report generation will work
correctly, user acceptance testing for QA inspectors, and stress testing to
assess performance during high-volume image processing.

2. YOLO model performance validation will be evaluated using the maP (mean
average Precision) for detection accuracy, precision, and recall to assess false
positives or negatives, Inference speed (FPS) to confirm real-time capability,
and confusion matrices to visualize detection reliability. Roboflow and YOLO
training logs will assist in monitoring model metrics (Ultralytics, 2023).

3. Cross-platform validation, meaning the system will be tested on different
laptops with varying CPU/GPU capabilities, different lighting conditions,
different PCB types, and surface finishes.

Design Considerations and Sustainability Goals

The system was designed to address several key limitations identified during the
trend analysis and stakeholder interviews:

1. Time Efficiency: Streamlines the inspection process by consolidating image

capture, annotation, and documentation into a single workflow.

2. Cost Accessibility: Built entirely using off-the-shelf components and open-
source tools, with an estimated cost under P25,000.00, making it affordable
for startups, schools, and small-scale fabricators.

3. Portability: Unlike traditional AOI systems, the setup is compact and can be
transported or deployed on workbenches without specialized infrastructure.

4. Documentation and Traceability: Automatically stores defect records with
timestamps and image references, improving traceability and supporting
continuous quality improvement initiatives.

The conceptual system supports the goals of sustainable engineering by reducing
dependency on manual documentation, minimizing human error, and enabling faster
identification and classification of common defect types. This aligns with broader
objectives in SDG 9 (Industry, Innovation, and Infrastructure) and SDG 12 (Responsible
Consumption and Production).

Relevance to Small-Scale Manufacturing

For small manufacturers who cannot afford industrial AOI systems, the proposed
Portable Smart Inspection System will provide a viable alternative that scales with
production volume and budget. It supports low-volume, high-mix production
environments common in prototyping, product development, and academic labs,
contexts where traditional automation is neither practical nor economical.
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By basing the system’s design on empirical defect trends, the research ensures
that the tool addresses real-world inspection pain points and adapts to evolving
manufacturing conditions (Adeyemi, 2024; Islam et al., 2024).

Conclusion and Future Works

This study addressed the quality assurance challenges in low-volume Printed
Circuit Board Assembly (PCBA) production by analyzing defect trends from 2019 to 2024
across six suppliers. The analysis revealed critical quality concerns, including issues
with pads, plating, solder mask, and assembly, particularly in boards produced with
full or semi-manual processes. These findings highlight the need for more cost-effective
and efficient inspection solutions for small-scale manufacturers, who often lack access
to expensive Automated Optical Inspection (AOI) systems.

In response, this research proposes a Portable Smart PCBA QA Inspection
System, a low-cost, modular solution designed to automate visual inspection using
open-source software and readily available hardware. The system integrates image
capture, real-time defect tagging, and automated report generation, offering a practical
alternative to manual inspection for small-scale manufacturers where AOI systems are
often cost-prohibitive.

In addition, this study establishes a foundational framework for the system’s
architecture, design workflow, and tool integration, which serves as a significant
starting point for the development of this inspection system. To strengthen the proposed
systems’ technical robustness, future efforts may focus on comprehensive testing and
validation, which includes system functionality evaluation, user acceptance testing to
ensure QA inspectors' usability, and stress testing to assess performance during high
inspection loads. The YOLO-based defect detection model may undergo performance
validation using precision and recall metrics, inference speed, and confusion matrix
analysis supported by Roboflow and YOLO training logs to monitor model behavior.
Furthermore, a cross-platform validation can be adapted to ensure the system’s
robustness across different laptop hardware configurations, PCBA types, and lighting
environments. These planned evaluations could provide the necessary evidence of
reliability, accuracy, and scalability, paving the way for future prototyping and
deployment of the system.

A key strength of the proposed system lies in its scalability and future
applications. The system’s modular design allows for easy customization to suit different
manufacturing environments and production volumes, making it adaptable for both
small and medium-sized enterprises. Future work could also focus on integrating Al-
based defect classification to further enhance the system’s capabilities, aligning with
current trends in automated manufacturing. Such integration would enable the system
to learn from inspection data, improving its accuracy and efficiency over time.
Additionally, the system could be expanded to incorporate machine learning algorithms
and be integrated into broader smart manufacturing ecosystems.

The findings have broad implications for the fields of electronics manufacturing,
quality assurance, and sustainable engineering. The study demonstrates that low-cost,
modular solutions can substantially improve inspection traceability and reduce error
rates in resource-limited environments. By making quality assurance tools more
accessible, the proposed system can be adopted in educational, prototyping, and startup
contexts.

Future research can expand on this work by evaluating the system in a wider
range of PCB technologies and integrating Al-driven defect classification (Ghelani,
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Trans, 2024). These advancements would not only improve both accuracy and
automation capabilities but further support broader initiatives in smart manufacturing
and the global transition toward Industry 4.0 (Elahi et al., 2023; Javaid et al, 2022).
Overall, this research offers a scalable and adaptable solution for enhancing
quality assurance in small-scale PCBA production. By providing an affordable, efficient,
and customizable tool for defect detection and reporting, the proposed system enables
manufacturers to improve quality assurance processes without increasing production
complexity or cost. Future applications could involve deploying the system in larger-
scale production environments and other industries, helping to drive the digital
transformation of quality infrastructure. Future research may also include long-term
pilot studies and performance evaluation to further validate the system’s effectiveness,
including additional key performance indicators (KPIs) such as defect reduction rates
and user feedback to assess its impact on real-world manufacturing environments.
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