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Faculty evaluation is essential for understanding
students' perceptions and feedback to improve the
employment of teaching strategies. With the use of
vast-scale textual feedback, in an efficient manner,
sentiment analysis was used as a tool for analyzing
textual semantics in a structured way that could
help facilitate understanding of what students
think. Using the datasets of students' feedback
from faculty evaluation from A.Y. 2019-2020 to
AlY. 2024-2025 for sentiment analysis using R
programming, this study  utilized Natural
Language Processing (NLP). Data preprocessing,
word cloud creation, and sentiment classification
using code were employed to systematically extract
prevalent themes, classify sentiments, and
examine faculty performance. The approach
comprises several processes, such as data
preprocessing, word cloud generation, and
sentiment classification, which are used to classify
sentiments that follow an organized topic
extraction and present useful insights about
teacher performance. In fact, according to the data,
students are overwhelmingly positive, with a deep
appreciation for teachers who are helpful, efficient,
and supportive in their teaching style and
approach. The result also reflects how much
students value the hard work that their teachers
do, such as the top positive word is kind (mabait).
Though they are less common, unfavorable
opinions do draw attention to the areas in which
students struggle, especially when it comes to their
academic  performance. While there are
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terminologies that reflect occasional problems in
the classroom, where the top negative words are
limit and hardship (hirap), it was noted that certain
students struggle with their tasks. The results
highlight how crucial it is to have a welcoming and
interesting learning environment. Teachers may
reinforce their strengths and highlight areas for
growth by wusing sentiment analysis to get
insightful information about student responses.
Finally, by ensuring a well-rounded, efficient, and
student-centered teaching approach for students
pursuing a Bachelor of Science in Computer
Science, this study offers a data-driven method of
improving the learning experience.

Keywords: big data analysis, computer science, faculty
evaluation, r programming language, sentiment
analysis, word cloud

Introduction

In state universities and Colleges, faculty member evaluations of performance are
important since they provide ideas regarding students' opinions and enhance
instructional strategies (Delgado & Cabiles, 2024; Chaudhry et al.,2023; Kim et al.,
2024). Due to the continuing improvement of technology, text mining techniques such
as sentiment analysis and word cloud visualization made it easier to analyze vast
amounts of student comments to faculty (Sweta,2024; Takaki & Dutra,2023).

Through faculty evaluation, the students' opinions, attitudes, and views about
the faculty were collected (Payandeh et.al., 2023). The evaluations include useful data
that is used to evaluate the effectiveness of instruction and identify areas in need of
improvement (Constantinou & Wijnen-Meijer, 2022).

Faculty evaluations do more than measure teaching performance (Facciolo &
Pittenger, 2024). It also helps schools improve the learning environment (Arifin et.al.,
2024). Sentiment analysis supports this goal by giving a clear view of what students feel
and think (Grimalt & Usart, 2024). It can reveal common concerns, show patterns over
time, and highlight areas that need attention (Salgado et.al.,2024; Sharma et.al., 2025).
These insights can guide faculty development programs, improve classroom practices,
and support curriculum updates (Deshpande et.al., 2025). With these benefits,
sentiment analysis becomes a useful tool for improving both teaching quality and
academic decision-making.

On the other hand, Natural Language Processing (NLP) is a field of artificial
intelligence that allows computers to understand and analyze human language by
converting unstructured text into a form that can be processed and interpreted by a
machine (Akhil et al., 2024).

In this study, NLP techniques were used to clean the student comments, remove
noise, standardize words, and prepare them for analysis, making it possible to detect
patterns, identify sentiment, and extract keywords from a large set of faculty evaluation
comments written in English and Tagalog. As textual feedback is unstructured, it might
be challenging to derive students’ perception from it (Lin et al., 2025), and thousands of
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written comments may be included in a single dataset, making it difficult to manually
evaluate and understand the sentiment as a whole (Jim et al., 2024).

This study analyzed and represented student input by utilizing word clouds and
sentiment analysis tools, exposing trends in students’ opinions. The main objectives of
this study were to apply techniques from natural language processing in sentiment
analysis, clean and structure unstructured faculty evaluation data, generate word
clouds to help visualize significant subjects in student comments, categorize feelings
into negative or positive groups, and provide views that enable teachers to improve their
strategies of instruction.

This study used faculty evaluation data from Bachelor of Science in Computer
Science students to discuss the text preparation, sentiment analysis, and word cloud
creation processes. The objective was to discover commonly used terms that reflect
students’ experiences and determine if the majority of their feedback is positive or
negative.

While some students used English, most of the comments were written in
Tagalog. The Tagalog remained the most common language in the comments as it was
the main language spoken by the students (Balahadia et.al., 2016) at Isabela State
University, thus the researcher considered it in doing the sentiment analysis. There
were several challenges faced during the conduct of the study, such as unstructured
data where student comments are frequently informal and may contain wording
variations, making standardization challenging; and context interpretation, where
certain words may have different meanings depending on the context, requiring careful
analysis. To help improve teaching methods and the learning environment, this study
was conducted to address these issues and advance a more thorough knowledge of
faculty performance based on student comments.

Many studies on sentiment analysis focus on English texts and structured survey
responses (Yacoub et.al., 2024), but few examined comments written in more than one
language (Sharma et.al., 2025), such as the mixed Tagalog-English feedback common
in Philippine SUCs. This lack of research creates problems in text cleaning, sentiment
tagging, and word interpretation because existing tools often rely on English-only
datasets, simple lexicons, or pre-trained models that do not match the language used
by students.

As a result, current methods may fail to capture the true meaning and tone of
student comments. This study addresses the gap by using NLP techniques that work
with both Tagalog and English, account for spelling variations, and adapt lexicon-based
and sentiment methods to a multilingual setting. Through this approach, the study
offers a more accurate and relevant way to analyze faculty evaluation feedback in
environments where code-mixed language is natural and widely used.

Table 1 presents a comparison table that shows that the study addresses the gap
by customizing preprocessing, lexicons, and sentiment techniques specifically for code-
mixed Tagalog-English faculty evaluation comments, something not well-covered in
existing literature.
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Table 1. Tabular Comparison of Methods for Multilingual Sentiment Analysis

Method Description D.ata Expected Strength
Requirement Accuracy
Uses Very low; can Simple. fast
Lexicon-Based predefined lists work with Low- ‘N tef r’e tabl,e' no
Methods of positive and small Moderate trainlipn Hee d’e d
negative words datasets &
- Clgssﬁies text Moderate; Works well with
Traditional using features - .

. requires small to medium
Machine such as bag-of- labelled Moderate datasets:
Learning words or TF- . ’

IDF training data adaptable
Learns Captures
patterns High; needs complex
. . many Moderate- linguistic
Deep Learning EiﬁT;tlgally labelled High patterns; better
datase tsg examples context
understanding
g:;é?ire_ Best performance
- - Medium- with mixed
Multilingual multilingual .
High; . languages;
Transformer language High
Models models for benefits from handles context,
sentiment fine-tuning grammar, and
analysis slang effectively

Methods

Improving teaching methods in the 21st century requires an awareness of how
students view teacher performance (Poonputta & Nuangchalerm, 2024). In order to
better understand students’ opinions, this study examined student comments from
instructors’ evaluations to determine students' opinions, feelings, and assessments
based on their written input by using sentiment analysis and word cloud visualization.
Natural Language Processing (NLP) is a branch of artificial intelligence that enables
computers to process, analyze, and interpret human language (Rongali, 2025).

In this study, NLP techniques were employed to convert unstructured student
comments from faculty evaluations into structured data that could be quantitatively
analyzed. NLP preprocessing allowed for the identification of patterns, extraction of
meaningful words, and sentiment classification (Dogra et.al., 2022) in both English and
Tagalog comments.

Research Design

This study analyzed student feedback from instructor evaluations using a
quantitative text mining technique that makes use of word cloud visualization and
sentiment analysis (Chavan et.al., 2024). While word cloud visualization reveals often
used terms (Skeppstedt et.al., 2024) and offers insights into how students view their
teachers, sentiment analysis categorizes the input into positive and negative attitudes
(Hasan et.al., 2024). Data gathering, preprocessing, sentiment analysis, and R
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programming data visualization are all steps in the study's organized research
methodology (Shahare et.al.,2024).

The quantitative text mining process follows a clear and structured workflow.
First, raw student comments are collected and imported into the system. Next, NLP
preprocessing steps—including text cleaning, tokenization, stop-word removal, and
word normalization—are applied to prepare the data for analysis. The cleaned text is
then processed using two main techniques: sentiment analysis, which determines
whether each comment conveys a positive or negative tone, and word cloud generation,
which highlights the most frequently used terms.

Finally, the results are summarized and visualized through word clouds, bar
plots, and sentiment distribution charts to provide meaningful insights into faculty
performance. This architecture ensures a systematic transition from unstructured text
to interpretable and actionable findings.

Participants and Locale of the Study

Participants in this study included Bachelor of Science in Computer Science
students from Isabela State University-Echague Campus. Students' comments on
instructor evaluations from the first semester of A.Y. 2019-2020 were the dataset for
the first semester of A.Y. 2024-2025. Direct contact with respondents was not
necessary because the emphasis of this study is on textual data analysis. Rather,
analysis was done using the faculty evaluation data that was already available.

Research Instruments

Comments from instructors were used as the primary source of data for this
study. The sentiment analysis and text mining process were carried out using R
programming, especially making use of tools like:

tidytext: for tokenization and text preprocessing

Wordcloud: for a graphic representation of word frequency

Syuzhet: for sentiment analysis

ggplot2: for data visualization

The study utilized R programming with libraries including tidytext, tm, syuzhet,
wordcloud, and ggplot2 due to their strengths in text mining, sentiment analysis, and
data visualization. The tidytext enabled tokenization and efficient manipulation of
textual data in a tidy data framework, making it straightforward to integrate with dplyr
for preprocessing. Syuzhet provided lexicon-based sentiment scoring and easily
accommodated custom lexicons, which is crucial for analyzing both English and Tagalog
comments. The wordcloud and wordcloud2 libraries allowed flexible and visually
informative representation of frequently used words. Compared with alternative tools
such as Python’s NLTK or TextBlob, R was chosen for its seamless integration with data
visualization, reproducibility in academic reporting, and the availability of libraries
suitable for multilingual lexicon-based sentiment analysis.

Data Collection Procedures

This section describes the methodical procedure of the study for collecting,
classifying, and evaluating student comments to do sentiment analysis utilizing both
Tagalog and English lexicons. The data used were extracted from the university's faculty
evaluations spanning five academic years. The study gathered student comments and
compiled them into one .csv format file, with a total of 605 student comments collected.
The data were cleaned by removing special characters, stop words, and redundant
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keywords. Using an .xlIsx file containing a custom Tagalog sentiment lexicon that gives
sentiment scores to words and the AFINN lexicon for English terms, wherein the cleaned
dataset was used for a custom lexicon-based analysis.

The dataset consisted of student comments extracted from the university’s
faculty evaluation system, covering the first semester of A.Y. 2019-2020 to the first
semester of A.Y. 2024-2025. All personally identifiable information was removed, and
the data were de-identified before analysis. Since the study involved retrospective
analysis of institutional data, direct consent from students was not required; however,
the project followed the university’s research ethics guidelines. The dataset is retained
securely in CSV and Excel formats, accessible only to the college program chairs, and
will be maintained for reproducibility for five years.

Data Cleaning Details

To ensure reproducibility, the methodology now includes specific steps for data
cleaning. The dataset was first consolidated into a single .csv file and inspected for
duplicates and empty entries, which were removed to prevent redundancy. Special
characters such as punctuation marks (!, .,,, ?, etc.) and numerals were stripped using
the tm and stringr libraries. Words were converted to lowercase to standardize the text,
and extra whitespace was removed. Stopwords in English and Tagalog—common but
semantically weak words such as “the,” “and,” “si,” and “ng”—were removed to reduce
noise.

Additionally, redundant or repeated keywords were filtered to avoid
overrepresentation in word frequency analysis. These steps ensured that only
meaningful terms were retained for tokenization, sentiment analysis, and word cloud
generation. For reproducibility, the R <code snippets using tm_map,
removePunctuation(), removeNumbers(), and custom stopword lists were added in the
revised methodology.

Text Preparation

The text preparation stage involved removing unnecessary characters, correcting
spelling variations, converting text to lowercase, and separating each word. Stop words
in both English and Tagalog were removed to keep only meaningful terms. After
cleaning, sentiment analysis was performed by matching each word with a lexicon
containing positive and negative Tagalog and English terms.

The system then assigned a sentiment score to each comment based on the words
it contained. For the word cloud, the cleaned words were counted and arranged based
on their frequency, allowing common themes in the comments to become visible. These
processes helped reveal the tone, patterns, and key topics in student feedback.

Analysis of Data

The qualitative interpretation of the textual data and descriptive statistics was
used in the study. Sentiment scores were computed by classifying words into three
categories: neutral, negative, and positive (Raees & Fazilat, 2024). Finding commonly
used terms that reflected students’ overall perceptions of their teachers was made easier
by the word cloud display. Additionally, bar graphs were created to show the distribution
of sentiment throughout the dataset.

The methodology addresses potential bias by including all student comments
over five academic years, without manual selection, to reduce sampling bias. Comments
were first identified as English or Tagalog based on the predominant language of the
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words, using the merged lexicon for token comparison. Sentiment scoring was
performed at the word level: each token was matched against the AFINN lexicon for
English and the custom Tagalog lexicon. Words were assigned sentiment values (+1 for
positive, -1 for negative, O for neutral), and the overall comment score was calculated as
the sum of its constituent words’ scores.

This approach ensures consistent and transparent classification of comments
into positive, negative, or neutral categories. To further reduce bias from code-mixed
comments, combined lexicons, and stop words in both languages were applied during
preprocessing and scoring.

To validate the sentiment analysis, approximately 10-20% of the comments were
randomly sampled and manually labeled as positive, negative, or neutral. Inter-
annotator agreement was computed using Cohen’s k to ensure consistency between
multiple human reviewers. The performance of the lexicon-based sentiment scoring was
quantified using precision, recall, and F1-score metrics. Errors were analyzed to identify
common misclassifications, particularly in code-mixed Tagalog-English comments.

To improve sentiment detection, the methodology was enhanced with bigrams
and trigrams, e.g., no feedback, so hard (sobrang hirap); negation scope handling, e.g.,
unkind (hindi mabait); intensifiers, e.g., so (sobrang), very; and polarity shifters to
accurately reflect meanings in both English and Tagalog. These enhancements help
capture context-dependent sentiment that single-word analysis may miss. The custom
Tagalog-English lexicon was benchmarked against AFINN on the English subset to
evaluate coverage and accuracy.

For future work, the study proposes the integration of refined multilingual
transformer models, such as mBERT or XLM-R, to further improve sentiment
classification on code-mixed comments and address limitations of lexicon-based
methods.

The sentiment analysis used in this study classified the comments into two main
classes: positive and negative. These classes were based on a lexicon of English and
Tagalog words with assigned sentiment values. Positive words included terms related to
helpfulness, clarity, and effective teaching, while negative words included terms linked
to poor communication, unclear instruction, or undesirable behavior. The classification
made it possible to measure the overall emotional tone of the feedback and determine
whether the majority of student comments expressed approval or concern.

Research Process

This section outlines the procedures that the researcher uses to generate
sentiment analysis and word clouds. The R Studio IDE and the R programming language
were utilized by the researcher.
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The programming environment was prepared by installing and loading the
necessary packages for text mining (tidytext, tm), data manipulation (dplyr),
visualization (ggplot2, wordcloud, wordcloud?2), reading files (readxl), and applying color
themes (RColorBrewer).
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The method for loading the dataset with student comments for processing is
illustrated in Figure 3.

1 Rstudio
File Edit Code Wiew Piots Session Build Debug Frofile Tools Help
o -0y - i - Addins +
0| BSCSSentimentAnalysisR © | Untitiedi* @) BSCsSentimentanalysis_Tagalog Englis... * - Environment
Scursensme | O S - #Run | S Source ~ " #* import Dataset ~
20- if (!comment_calum %in% colnames(comment_data)) | + R+ fk Glbal Envrooment =
21 stop(paste("Error: Column”, comment_colunn, "not found in comment_data.")) =
22- }
23 afinn_lexicen
24 # Step 3: Build and clean Corpus cleaned_comments
32 corpus <~ Corpus(VectorSource (comment_data [ [comment_column]))) O conbined_Texicon
27 corpus_clean < corpus %% O canbined_stopwords
28 tm_map(content_transformer(tolower)) %% # convert to lowercase O comment_data
29 tm_map(removePunctuation) %% # remove punctuation corpus
30 te_mapCremoveNusbers) %% # remove numbers
31 tmmap(stripuhitespace) %% # remove extra whitespa corpus_clean
32 tm_map(removewords, stopwords(“en”)) # remove English 5topmo scored_data
33
34 # Convert cleaned corpus back to character vector stop_words
35 cleaned_comments <- data.frame(text - sapply(corpus_clean, as.character), stringsAsFact tagalog_lexicon_raw
36 tagalog sentiment
37 # Step 4: Load AFINN (ENg ment lexicor
38 "hetps: //raw. githubusercontent. con/fielsen/af inn/master/afinn/data/armn- O 1303100 stopwords
39 afinn_file <~ basename(afinn_ur R + O tokenized data
a0 . : v values
op Level) 2 #sopt: afinn_file
Console  Terminal . Background Jobs [ afinn_url

R+ R422 . C/BSCS sentiment/

wWarr

comment_column

ning message:

package ‘readx’ was built under R version 4.2

> #

> setwd("C:/BSCS sentiment")

> #

Files Plots  Packages

Step 2: Set working directory and load datasets &

Load comment data

> comment_data <- read.csv("bscscomment.csv", stringsAsFactors = FALSE)
> # check and use correct comment column
> comment_colum <- "8SCS”

}
> #

> if (lcosment_column ¥in% colnames(comment_data)) {
stop(paste("Error: Column”, comment_column

"not found in comment_data."))

Step 3: Build and clean Corpus

> carpus <- Corpus(vVectorsource(conment_data[ [comment_column]]1))
> corpus_clean <- corpus %%

tm_map (content_transformer (tolower)) %%
tn_map(removePunctuation) %%
tm man{removeNumbars) ¥>%

# convert to lowercase
# remove punctuation
# remove numhers -

History  Connections  Tutorlal

Help

Qo -

2477 obs. of 2 variables
624 obs. of 1 variable
20069 obs. of 2 variables
29389 obs. of 2 variables
624 obs. of 1 variable
List of 624

List of 624

490 obs. of 2 variables
1149 obs.
45832 obs. of 5 variables
17592 obs. of 2 variables
28240 obs. of 2 variables
2687 obs. of 1 variable

of 2 variables

“AFINN-111. txt"

“https://raw.githubusercontent.com/fnielsen/afinn/master/afin
"BSCS"

Viewer  Presentation

Figure 4. Build a Corpus

The construction of a text corpus for Natural Language Processing (NLP) tasks is
shown in Figure 4. The feedback comments were converted into a structured format for
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this corpus, which made manipulation and analysis simpler. After that, all words were
changed to lowercase, punctuation was removed, numerals were removed, extra
whitespace was removed, and frequent stop words in both English and Tagalog were
filtered out of the text data.

To reduce noise and make sure that only relevant words contribute to the
analysis, stop words—words that do not convey substantial meaning—such as “the,”
“and,” “si,” and “ng”—were eliminated. To prepare it for other NLP processes like
tokenization, sentiment analysis, and word frequency analysis, the cleaned corpus was
then transformed into a character vector.
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Figure 5. Load Sentiment Lexicons (AFINN and Tagalog)

The use of two emotion lexicons is illustrated in Figure 5, where AFINN for sentiment
scoring in English and a customized Excel lexicon included both positive and negative
evaluations for Tagalog words.

On the other hand, Figure 6 illustrates how common or unnecessary terms from
both languages—such as “is”, “in”, “to”, “the”, “at”, “ang”, “at”, “sa”, etc.—were
eliminated throughout the analysis process.
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Figure 6. Combining English and Tagalog Stop Words

In addition, Figure 7 establishes a common vocabulary for sentiment analysis

Tagalog and English.
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To identify important words, break phrases up into their individual words
(tokens) and eliminate stop words (See Figure 8).
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Figure 8. Tokenization and Removal of Stop Words

Based on the merged lexicon, give words sentiment ratings (Refer to Figure 9).
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Figure 9. Score Sentiment

Figures 10, 11, and 12 show how the wordcloud2 function is used to visualize
common sentiment-bearing words in various forms (triangle, star, and circle), as
demonstrated by the code wordcloud2 (wordcloud data, shape = "circle"),
wordcloud2(wordcloud_data, shape = "star"), and wordcloud2(wordcloud_data, shape =
"triangle")
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Figure 13 displays the creation of a bar chart that shows the most common terms

from student comments.
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Figure 14 shows a method for separating positive and negative feedback and

determining their respective proportions.
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The following figures (Figures 15 to 18) demonstrate how to make unique word
clouds and bar plots for positive and negative terms to visualize sentiment distinctly.
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Figure 16. Word Clouds for Negative Words
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Ethical Considerations

This study ensured the confidentiality and anonymity of student responses by
closely adhering to ethical research requirements. No personally identifiable information
was utilized, and an aggregate analysis of the dataset was conducted. The study was
carried out in accordance with institutional guidelines for ethical research procedures
and data protection.

Results and Discussion

The study focused on the application of NLP techniques to student comments
from faculty evaluations through the R programming language and R Studio IDE to
analyze comments. The findings provide an understanding of students' perspectives,
highlighting both positive and negative sentiments toward the faculty. To guarantee
specific sentiment categorization, the input data was preprocessed by removing special
characters, stop words, and unnecessary keywords. After cleaning, the data was
organized for sentiment analysis and word cloud creation. The analytic stages are listed
below.

Table 2. Code Mapping

Research Objective

Code Steps Addressing It

Apply NLP techniques

Clean and structure data
Generate word clouds
Classify sentiments

Provide insights for teaching

Steps 1, 3, 4-9
Steps 2, 5-9
Steps 11, 14
Steps 4-10, 13
Steps 12, 13, 14

Table 2 summarizes how the study’s research objectives were addressed through

specific steps in the R-based methodology. For instance, the application of NLP
techniques was implemented in Steps 1, 3, and 4-9, which included loading packages,
creating a text corpus, cleaning data, tokenizing comments, and preparing sentiment
lexicons. The objective of cleaning and structuring unstructured faculty evaluation data
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was accomplished in Steps 2 and 5-9, covering data loading, preprocessing, stop word
removal, and combining English and Tagalog lexicons. Generating word clouds (Steps
11 and 14) provided a visual representation of frequent sentiment-bearing words, while
sentiment classification (Steps 4-10, 13) allowed the identification of positive and
negative comments. Finally, Steps 12, 13, and 14 enabled the study to provide
actionable insights for teaching by summarizing sentiment distributions and
highlighting key areas for instructional improvement. This mapping demonstrated the
systematic alignment of coding steps with research objectives, ensuring that each goal—
from data preparation to actionable insights—was methodically achieved.

Application of Natural Language Processing (NLP) Techniques

To ascertain the sentiment included in a collection of comments from BSCS
students, natural language processing (NLP) techniques were applied. Because these
comments were written in both Tagalog and English, it was necessary to incorporate
multilingual techniques and resources into the analysis to guarantee a thorough
assessment of opinions.

To facilitate word-level analysis, the approach started with text preprocessing, in
which student comments were tokenized—that is, divided into individual words. Both
Tagalog stop words from a bespoke lexicon and English stop words from the tidytext
package were used in the combined stop word list. Words like “ang,” “ng”, “the”, and “is”
which do not add much to sentiment analysis, were eliminated in this phase.

Two sentiment lexicons were used to take into consideration the multilingual
character of the responses: an organized Tagalog sentiment lexicon, in which words
were manually classified as either positive or negative, and the AFINN lexicon for English
sentiment scoring. An emotion score—+2 for positive and -2 for negative—was given to
each word in the Tagalog language. The tokenized words were then scored using a
combined sentiment dictionary that was created by combining these two lexicons.

To make sure that only content that expressed an opinion was examined, words
that were not included in either lexicon were not included in the sentiment assessment.
Sentiment ratings reflecting the emotional tone of the student input were assigned by
matching each remaining word with the combined lexicon.

Word clouds that highlighted the frequency and emotional context of both
positive and negative words were created independently in order to display the results.
Bar charts offered a clear, proportionate representation of the distribution of positive
and negative attitudes across the dataset and also showed the sentiment-bearing
phrases that were used the most.

The common opinions of BSCS students were successfully revealed by this NLP-
driven method. Commonly used positive terms that conveyed gratitude and satisfaction,
as well as negative words that suggested areas that would want development, were
found through the study. Through the integration of bilingual sentiment lexicons,
language-aware preprocessing, and straightforward data visualizations, the technique
provided a strong and perceptive way to examine student comments. Making well-
informed decisions on curriculum development, instructional strategies, and program
improvement in general can be aided by these insights.

Given the bilingual nature of the dataset, context interpretation posed challenges
(Balahadia & Commendador, 2016). Some words carry different meanings depending on
the language; for example, “loob” in Tagalog can imply an internal state or attitude,
while English words like “love” directly express positive sentiment. To address this,
separate lexicons were used for each language, and ambiguous or context-dependent
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terms were manually reviewed. Language-aware tokenization, stop word removal for
both languages, and normalization of spelling variations further ensured accurate
sentiment classification. These measures minimized misclassification and allowed the
analysis to reflect students’ intended meanings accurately.

Clean and Structure Unstructured Faculty Evaluation Data

To prepare the unstructured faculty evaluation comments for analysis, the raw
dataset was first loaded and inspected (Step 2). Text preprocessing involved converting
all text to lowercase, removing punctuation, numbers, and extra whitespace, and
standardizing both English and Tagalog stop words (Steps 5-7). English and Tagalog
sentiment lexicons were combined to ensure consistent sentiment scoring across
languages (Step 8). Finally, the cleaned comments were tokenized, and non-informative
words were removed, resulting in structured word-level data suitable for sentiment
analysis (Step 9). This process transformed raw, unstructured feedback into a clean,
organized format, enabling reliable NLP-based insights and visualizations in subsequent
steps.

Generating Word Clouds for Visualizing Key Themes in Student Feedback
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Figure 19. Word Cloud of Word Sentiment

Key themes in student response were shown using word clouds, which often
highlighted emotional terms in various forms (triangle, star, and circle). With terms like
kind (mabait), intelligent (magaling), love, industrious (masipag), good (mabuti), and
effective, the circle-shaped word cloud highlighted positive comments and expressed
gratitude for the instructor's attributes and efficacy as a teacher.

Negative adjectives like hard (hirap), none (wala), pressure, limit, and teach (turo)
described difficulties that students experienced. The triangle and star clouds provided
more information about the difficulties of the course and the efficacy of instruction.
Future enhancements to the course and teaching methodology will be guided by the
captivating way in which these visualizations summarize student sentiments.
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Figure 20. Bar Plot Top 20 Frequent Sentiment Words

The most common opinions in student comments are clearly and concisely
represented by the bar plot of the top 20 frequently used terms. It shows that 15 of the
top 20 words are positive, highlighting how much pupils value their teacher. The list is
dominated by positive phrases that reflect the educational approach's characteristics,
such as mabait (kind), magaling (great), love, respect, effective, and masipag
(industrious). Conversely, derogatory terms like limit, hirap (difficult), hard, pressure,
and wala (none) highlighted areas in which students had difficulties. As the most
prominent term, mabait (kind) strengthens the generally good feeling. The main topics
of the comments were summarized in this bar plot, which offers insightful information
for improving the course.

Table 3 presents the top tokens identified in the dataset, including their
frequencies, part-of-speech (POS) tags, and sentiment labels. The results show that
most of the highly frequent words carry positive sentiment. Tokens such as mabait
(kind), magaling (intelligent), maganda (beautiful), and mabuti (good) appear often and
are tagged mainly as adjectives, suggesting that students used descriptive words to
highlight the instructor’s positive behavior and teaching performance.

On the other side, action-related words like turo (teach), gained, and bless also
appear among the top tokens, showing that students recognized helpful teaching
practices and personal learning outcomes. In contrast, negative words such as hirap
(difficulty), limit, hard, and pressure occur less frequently but point to common
challenges experienced by learners, including task difficulty and academic stress. The
mixture of positive and negative tokens reflects the range of student experiences. The
strong presence of positive descriptors supports the overall positive sentiment trend
observed in the study, while the negative terms help identify areas where instructional
strategies and course delivery can be improved.
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Table 3. Top Tokens with Frequency, POS Tags, and Sentiment

Sentiment

Token Frequency POS Tag S Sentiment Label
core
mabait 58 ADJ 2 Positive
magaling 20 ADJ 2 Positive
love 11 NOUN 3 Positive
turo 10 VERB 2 Positive
wala 9 ADV 2 Positive
bless 7 VERB 2 Positive
masipag 7 ADJ 2 Positive
respect 7 NOUN 2 Positive
basta 6 ADV 2 Positive
effective 6 ADJ 2 Positive
mabuti 6 ADJ 2 Positive
maganda 6 ADJ 2 Positive
favorite S ADJ 2 Positive
gained 5 VERB 2 Positive
hirap 12 NOUN -2 Negative
limit 12 NOUN -2 Negative
hard 10 ADJ -1 Negative
loob 10 NOUN -2 Negative
agad 8 ADV -2 Negative
pressure 8 NOUN -1 Negative
difficult 4 ADJ -1 Negative
kailangan 4 VERB -2 Negative
lagi 4 ADV -2 Negative
absent 3 ADJ -2 Negative

Table 4 presents the sentiment analysis of student comments for the first and
second semesters. In the first semester, there were 163 positive words and 54 negative
words, making up 75.12% and 24.88% of the total 217 words, respectively. In the second
semester, positive words decreased to 101, while negative words slightly increased to 46
out of 147 total words, representing 68.71% positive and 31.29% negative.

Table 4. Sentiment Analysis by Semester

Positive  Negative Total Positive Negative
Semester Words Words Words Percentage Percentage
1st Semester 163 54 217 75.12 24.88
2nd Semester 101 46 147 68.71 31.29

These results show that students’ feedback was mostly positive in both
semesters. However, the positive sentiment was higher in the first semester, and the
negative sentiment increased in the second semester. This may indicate emerging
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challenges or concerns from students as the academic year progresses. Overall, the table
highlights changes in student sentiment across semesters and provides insight into
areas that may need improvement or support.

Table 5. Sentiment Analysis by Year

Positive  Negative Total Positive Negative
Year Words Words Words  Percentage Percentage
1st Year 87 59 146 59.59 40.41
2nd Year 75 23 98 76.53 23.47
3rd Year 73 13 86 84.88 15.12
4th Year 29 5 34 85.29 14.71

Table 5 shows the sentiment of BSCS students’ comments across four academic
years. Positive words increased steadily from 59.59% in the 1st year to 85.29% in the
4th year. At the same time, negative words decreased from 40.41% to 14.71%. This
trend suggests that students’ feedback became more positive as they advanced through
the program. The decrease in negative sentiment may indicate growing confidence,
familiarity with the curriculum, or improved learning experiences. The results reveal a
clear upward trend in positive sentiment and a decline in negative sentiment across the
four years.

Table 6. Positive Sentiment Proportion by Year Level with Bootstrapped 95%
Confidence Interval

Year Positive Negative Total Positive 95% CI

level Words Words Words Proportion (Lower-Upper)
1st Year 87 59 146 0.596 0.514 - 0.678
2nd Year 75 23 98 0.765 0.684 — 0.847
3rd Year 73 13 86 0.849 0.767 - 0.919
4th Year 29 5 34 0.853 0.735-0.971

Table 6 presents the sentiment analysis of student feedback across year levels.
The proportion of positive words increased from 0.596 in the 1st Year to 0.853 in the
4th Year. Bootstrapped 95% confidence intervals indicate that these estimates are
precise, with minimal overlap between 1st and later year levels. Sentiment analysis of
student feedback revealed an increasing trend in positive words from BSCS 1st Year
(0.596, 95% CI: 0.514-0.678) to 4th Year (0.853, 95% CI: 0.735-0.971). Bootstrapped
confidence intervals confirmed the reliability of these estimates. A chi-square test for
proportions indicated that the differences across year levels were statistically significant
(X2 =22.425,df =3, p < 0.001), suggesting that student feedback becomes progressively
more positive with advancing year level. This pattern may reflect greater familiarity with
courses, instructors, or university processes as students advance, highlighting the
importance of considering year-level differences in evaluating student perceptions.
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Figure 21. Percentage of Positive and Negative Words

Sentiment score analysis shows that the dataset has a mixed emotional tone,
with a higher percentage of positive feelings than negative sentiments (Figure 21). Words
that express praise, joy, and gratitude are frequently employed and represent positive
attitudes. But there are also unpleasant feelings, especially when they are connected to
challenges or failures. The bulk of the comments have a propensity toward confidence
and contentment, and this balance between positive and negative attitudes offers
insightful information about the overall sentiments and ideas of those who commented.
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Figure 22. Word Cloud of Positive Words Figure 23. Word Cloud of Negative Words

The figures above (Figures 22 and 23) show the positive and negative word clouds
extracted from the study. The positive word cloud, which is over half the size of the total
word cloud, strongly emphasized the word mabait (kind), followed by magaling
(intelligent), in the observation of the word cloud for positive and negative mood.
Strongly favorable feedback was indicated by the magnitude of these two words, which
were the most important. Numerous positive comments that expressed admiration for
the instructor's attributes were almost the same size. The negative word cloud, on the
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other hand, had several terms with comparable proportions, making them easier to
understand, like limit, hirap (difficult), hard, loob (inside), and agad (quickly). Even while
the negative adjectives were less common, they, however, highlighted important issues
and problems.

The word clouds and bar plots provide clear analytical insights into student
perceptions by visually emphasizing frequently mentioned positive and negative terms.
Positive words such as mabait (kind), magaling (intelligent), and masipag (industrious)
highlight teaching behaviors that students appreciate, including approachability, clarity
in instruction, and dedication to student learning. Conversely, negative terms like hirap
(difficult), hard, and pressure indicate challenges related to course pacing, workload,
and instructional complexity. By linking these frequently used words to specific teaching
strategies and classroom experiences, the visualizations allow faculty to identify
strengths to reinforce and areas needing improvement, such as adjusting assignment
difficulty, providing additional explanations, or pacing lessons more effectively. These
figures, therefore, serve not only as summaries of sentiment but also as actionable
guides for enhancing teaching methods and the overall learning environment.

Insights on Enhancement of Teaching Strategies

The analysis of student comments provided clear insights that can guide faculty
in improving instructional strategies. Step 12 (word clouds) visually highlighted
frequently mentioned positive and negative terms. Positive words such as mabait (kind),
magaling (intelligent), love, and masipag (industrious) indicate that students appreciate
approachable, dedicated, and effective teaching. Negative words like hirap (difficult),
hard, pressure, and limit revealed areas where students face challenges related to
course difficulty, workload, and time management. Step 13 (bar plots of top words)
further quantified these trends, showing the most common positive and negative
sentiments. Positive words were dominant, reflecting students’ general satisfaction with
teaching practices, while negative words highlighted recurring challenges that
instructors can address. Step 14 (sentiment breakdown) summarized the overall
proportion of positive and negative comments, providing a snapshot of the class-wide
perception of teaching quality.
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Figure 24. Bar Plot of Top 10 Positive Words
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Based on the study, 69.59% of the general attitude conveyed is positive,
suggesting that people have a generally positive opinion of the teachers. The most often
used positive adjectives are mabait (kind), magaling (intelligent), and love, which express
how much learners value the instructors’ ability, friendliness, and enthusiasm for their
work. Additional common positive terms like turo (teach), masipag (industrious), and
effective highlight how much they value teachers who are committed, diligent, and
successful in their strategies. Words like bless, respect, basta (just), and maganda
(beautiful) demonstrate that pupils regard their instructors’ interpersonal abilities and
the classroom environment as a whole. The high frequency of these affirmative terms
implies that students have a favorable opinion of their educational experiences, which
shows that instructors who interact with students in a helpful and meaningful manner
are well-liked.
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Figure 25. Bar Plot of Top 10 Negative Words

The bar plot of the top 10 negative terms is displayed in Figure 25. However,
30.41% of unfavorable opinions were also identified, which sheds light on areas that
require improvement. Negative terms such as hard and hirap (difficulty) suggest that
certain students find certain components of the coursework difficult. These opinions
imply that some program components can be viewed as being overly challenging or
demanding. Words such as pressure, limit, and kailangan (need) show that the student
experiences stress as a result of the program’s requirements. The results suggest that
some students may be experiencing stress as a result of the workload or time
management needs. There were words like lagi (always), agad (immediately), and loob
(inner self) show that some students can feel pressured or under constant strain. These
sentiments highlight how important it is to provide students enough time and assistance
while still having a balance in the academic demand. Furthermore, the use of the term
“absent” in the negative attitudes may be a reflection of worries about the attendance of
the faculty member or the influence of outside variables such as academic or personal
demands.

Through this analysis, a full representation of the student sentiment is offered
by the mix of favorable and unfavorable opinions. Faculty may address areas where
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students struggle, including how to manage stress, workload, time, and difficulty levels,
while also using student strengths, which include kindness, effectiveness, and
dedication. Faculty members may improve a balanced and encouraging learning
environment that encourages and motivates students to have a higher involvement and
achievement by implementing changes in response to this input.

The analysis of student comments using NLP revealed both positive and negative
sentiments that provide actionable insights for teaching and curriculum development.
Positive terms indicate that students value instructors’ approachability, dedication, and
effective teaching strategies, suggesting that reinforcing these behaviors can enhance
learning experiences. Negative terms highlight areas where students face challenges,
pointing to potential adjustments in workload, pacing, and instructional clarity. Word
clouds and bar plots visually summarized these trends, showing the frequency and
emphasis of sentiment-bearing words, while also linking specific words to teaching
behaviors and course components. Special attention was given to the bilingual nature
of the dataset, with context-aware preprocessing and separate lexicons for Tagalog and
English, ensuring that words with different meanings in each language were correctly
interpreted, which enhanced the reliability of sentiment classification and allowed
faculty to draw meaningful conclusions from students’ feedback.

Conclusion and Future Works

This study analyzed student feedback from faculty evaluations in the Bachelor of
Science in Computer Science program using natural language processing (NLP)
techniques. The results revealed that most students expressed positive opinions about
faculty approachability, teaching effectiveness, and engagement. Negative comments
highlighted challenges such as course difficulty, workload, and classroom environment.
Based on these findings, faculty can improve teaching strategies by maintaining
supportive and approachable teaching while engaging students actively; adjusting
course pacing, clarifying complex topics, and providing additional resources to reduce
stress; and creating a welcoming classroom environment that encourages participation
and collaboration. On the other side, program chairs and administrators can use these
insights to guide curriculum improvements and faculty development programs.

The study has several limitations. First, it relied only on textual comments, which
do not capture non-verbal cues such as facial expressions, tone of voice, or other
environmental factors influencing student perception. Second, the dataset was limited
to the BSCS program, so results could not be generalized to other fields. Third, the
analysis did not integrate other forms of student feedback, such as surveys, class
participation data, or peer evaluations, which could enrich the understanding of student
experiences.

Future research can address these limitations by incorporating multiple feedback
sources, including non-verbal cues, surveys, and peer reviews; applying advanced NLP
techniques such as topic modeling or deep learning for more nuanced insights; and
expanding the developed system to other programs or institutions, enabling school
administrations to use it for faculty development programs and broader academic
planning.

In conclusion, sentiment analysis of student feedback provides actionable
guidance for faculty and administrators. By addressing identified challenges and
reinforcing teaching strengths, instructors can enhance the learning experience, and
instructional strategies can become more effective and responsive to student needs.
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Appendix

Table 7. Selected Tagalog Terms and English Translations

Tagalog Terms

English Translation

Context / Notes

mabait
magaling
masipag
mabuti
maganda
hirap
limit
turo

loob
agad
pressure
wala
basta
respect
bless

favorite

kind

excellent/great
industrious/hardworking
good

good /beautiful
difficult/hard
limit/restriction
teach / teaching
inner self/attitude
immediately/quickly
pressure/stress
none/nothing
just/simply

respect

bless/God bless

favorite

Frequently used positive descriptor of
instructors’ personality

Positive word describing teaching ability
or skill

Describes the dedication and effort of the
instructor

General positive descriptor for actions or
character

Positive comment about teaching or
subject

Negative sentiment about the difficulty of
tasks or lessons

Refers to constraints in time, workload, or
instructions

Positive or neutral word about teaching
activity

Context-dependent; can indicate internal
motivation or disposition

Negative or neutral; often refers to rushed
tasks or deadlines

Negative sentiment about stress caused
by workload or requirements

Negative sentiment indicating a lack of
something (support, resources, clarity)
Neutral/positive; used in phrases like
“basta okay” (just fine)

Positive, often about teacher-student
interaction

Positive sentiment expressing gratitude or
goodwill

Positive; indicates student preference or
admiration
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