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The rapid advancement of deepfake technology 
presents a growing threat to information integrity and 
online security. To address this, this research 
proposed an efficient deepfake video detection 
framework that integrates Convolutional Neural 
Networks (CNNs) for spatial feature extraction, 
Recurrent Neural Networks (RNNs) with a temporal 
attention mechanism for modeling sequential 
dependencies, and Particle Swarm Optimization 
(PSO) for hyperparameter tuning. The pipeline 
included frame extraction, face alignment, and 
feature processing using a pre-trained CNN, followed 

by an RNN that emphasizes critical temporal artifacts 
through attention. PSO further enhanced model 
performance by optimizing key hyperparameters such 
as learning rate and hidden dimensions. To evaluate 
the effectiveness of the proposed model, a 
comparative analysis against existing deepfake 
detection methods, including XceptionNet, LSTM with 
frame-level features, and CNN-GRU without 
attention, was conducted. The proposed CNN-RNN 
model with Temporal Attention and PSO 
outperformed the baselines, demonstrating the 
model’s improved generalization and reliability, 
particularly in reducing false negatives, making it a 
robust solution for real-world media forensics and 
platform integrity. 
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Introduction 

 The rapid advancement of machine learning has made it increasingly easy to 
generate convincing fake videos, commonly known as deepfakes. These manipulated 
videos, which often involve replacing a person’s face with someone else’s seamlessly, 
pose a serious threat to privacy, security, and public trust. Rahman et al. (2022) 

emphasized that deepfakes can appear highly realistic, deceiving even trained observers. 
While some applications of this technology are intended for entertainment or 
educational purposes, it has also been exploited for malicious activities such as identity 
theft, cyberbullying, misinformation campaigns, and non-consensual content creation. 

Deepfake detection has become a critical area of research in response to these 
threats. Early works, such as MesoNet by Afchar et al. (2018), demonstrated the 
feasibility of using compact Convolutional Neural Networks (CNNs) to detect 
manipulated facial features. However, as Deepfake algorithms continue to evolve, more 
sophisticated detection approaches are required. 

A distinguishing characteristic of videos, as highlighted by Yu et al. (2021), is 
their temporal continuity. Unlike images, videos consist of sequences of frames with 
strong temporal correlation. Deepfakes often disrupt this consistency, creating artifacts 
such as flickering or misaligned facial features. Güera and Delp (2018) leveraged this 
by employing Recurrent Neural Networks (RNNs) to model temporal patterns and detect 
such anomalies. Building on this, researchers have explored combining CNNs with 
RNNs, integrating attention mechanisms and optimization techniques to enhance 
performance. 

Hybrid models that integrate CNNs for spatial feature extraction and RNNs for 
temporal modeling have shown promising results (Al-Adwan et al., 2023; Chen et al., 
2020). The inclusion of a temporal attention mechanism allows the model to focus on 
discriminative frames, improving its ability to detect subtle manipulations (Gao et al., 
2021; Yan et al., 2020). Furthermore, Particle Swarm Optimization (PSO)—a population-

based optimization algorithm inspired by the social behavior of birds (Kennedy & 
Eberhart, 1995)—has been successfully used to fine-tune hyperparameters in deep 
learning models, leading to improved generalization and performance (Cunha et al., 
2024; Shami et al., 2022). 

In this study, the researchers presented a unified deepfake detection framework 
that integrates CNNs, RNNs with a temporal attention mechanism, and PSO. These 
components were designed to work in tandem: CNNs extract spatial features from each 
frame, RNNs capture temporal dependencies across frames, the attention mechanism 
identifies key temporal cues indicative of manipulation, and PSO optimizes model 
parameters to boost detection accuracy. The model was trained and evaluated using the 
Celeb-DF dataset, with performance assessed through standard metrics such as 
accuracy, precision, recall, and F1-score. 

To ensure real-world applicability, the final model was deployed in a web-based 
application that enabled users to identify potentially manipulated videos. This research 
aimed to contribute to a more secure digital environment by advancing the capabilities 
of deepfake detection through the synergy of deep learning and optimization techniques. 
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Methods 
Project Design 

Figure 1 shows that the project adopted an experimental design implemented in 
three sequential phases: (1) Data Preprocessing, (2) Model Development, and (3) System 
Implementation and Deployment. This phased design allowed for modular testing and 
optimization of each component before integration. The goal was to create a reliable 
deepfake video detection model using a hybrid architecture enhanced by temporal 
attention and optimized using Particle Swarm Optimization (PSO). 

 
Figure 1. Project Design 

 
Phase 1: Data Preprocessing 

 
Dataset Preparation. The Celeb-DF v2 dataset was selected as the benchmark 

dataset for this study due to its diverse and high-quality content. It consists of 5,639 
real videos collected from 59 YouTube celebrities (Celeb-real and YouTube-real) and 
5,639 deepfake videos (Celeb-synthesis) generated using various synthesis models. The 
dataset is publicly available and widely accepted for research purposes, making it 
suitable for evaluating deepfake detection systems. Each video in the dataset was 
labeled as either real (1) or fake (0). 

To ensure balanced class distribution across training, validation, and testing 
phases, real video samples were duplicated. The final dataset was split into 7,265 
training, 1,557 validation, and 1,557 testing videos, with equal numbers of real and 
deepfake videos in each subset. 
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Frame Extraction. To extract frames from each video, the researchers used the 
OpenCV library (cv2) in Python. Specifically, five uniformly spaced frames were 
extracted per video to balance between computational efficiency and temporal 
information retention. The total frame count of each video was first determined, and 
the frame indices were calculated using the formula: 

 

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑚𝑎𝑥([
𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑎𝑚𝑒𝑠

5
],1) 

 
Equation 1. Frame Extraction Formula 

 
This ensures the selected frames were evenly distributed across the video’s 

timeline. If a video contained fewer than five frames, zero tensors (black images) were 
padded to maintain consistent input dimensions. Below is the summary of the 
extraction procedure: 

1. Load the video using cv2.VideoCapture. 
2. Compute the total number of frames. 
3. Determine five equally spaced frame indices using the formula above. 
4. Extract frames at these indices using 

cap.set(cv2.CAP_PROP_POS_FRAMES, index) and cap.read(). 
5. If fewer than five frames are available, pad with zero tensors. 

Image Preprocessing. Each extracted frame underwent a series of image 
processing steps implemented using the torchvision.transforms library. The complete 
transformation pipeline was as follows: 

1. Convert to PIL Image: Raw frames extracted as NumPy arrays via OpenCV 
were converted to PIL image format to enable compatibility with PyTorch 
transforms. 

2. Resize: Each frame was resized to 224 × 224 pixels to ensure uniformity 
across all inputs and to match the input dimension required by the pre-
trained CNN backbone. 

3. ToTensor: Resized images were converted into PyTorch tensors, scaling 
pixel values to the range [0,1][0,1]. 

4. Normalize: Tensors were normalized using the ImageNet mean [0.485, 
0.456,0.406] and standard deviation [0.229, 0.224, 0.225], aligning the 
input distribution with pre-trained model expectations and improving 
training stability. 

This transformation pipeline was applied consistently across all training, 
validation, and testing data, and is reproducible using the following transform 
definition: 

transform = transforms.Compose([transforms.ToPILImage(), 
transforms.Resize((224, 224)), transforms.ToTensor(), 
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 
0.224, 0.225]) 

Dataset Splitting. The processed video dataset was divided into 70% for 
training, 15% for validation, and 15% for testing using the train_test_split function 
from scikit-learn, ensuring that class distributions remained balanced across the 
splits. 
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Custom Dataset Loader. A PyTorch Dataset class (VideoDataset) was created 
to load the video frames and labels. DataLoaders with custom collate_fn functions were 
used for batching sequences of frames during training and evaluation. 
 
Phase 2: Model Development 

During this stage, a tailored neural network was designed and trained 
specifically for deepfake detection. The model integrated both spatial and temporal 
analysis through an attention-based architecture and was further enhanced using 
Particle Swarm Optimization (PSO). 

CNN-RNN-Attention Architecture. The proposed model was built on a hybrid 

architecture of Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) 
units, and a Temporal Attention Mechanism. With ReLU activation and max pooling, 
the CNN module’s two convolutional layers are intended to extract pertinent spatial 
features from every frame. These features were subsequently flattened and input into 
a bidirectional LSTM, allowing the model to learn temporal dependencies across frames. 
Following this, a temporal attention mechanism was introduced to assign dynamic 
weights to each LSTM output, permitting the model to focus on significant frames. In 
the final stage, a fully connected layer interprets the attention-weighted context 
vector—derived from the LSTM outputs—to perform binary classification, determining 
whether the video content is real or artificially generated. 

Particle Swarm Optimization. In order to enhance the performance of the CNN-
RNN-Attention model, Particle Swarm Optimization (PSO) was applied in order to 
automatically discover the optimal values of two very important hyperparameters: the 
learning rate and the number of units in the GRU layer. PSO is a population-based 
metaheuristic search inspired by the behavior of nature-inspired swarms. Every 
“particle” in PSO explores the solution space by changing its position based on its own 
memory and the overall knowledge of the swarm. 

In this research, PSO aimed to reduce training loss, which was defined as the 
objective (fitness) function. Each particle, representing a unique pairing of learning rate 
and GRU dimension, initiated a new model configuration trained over 10 epochs using 
the Adam optimizer and a cross-entropy loss function. The resulting loss value for each 
configuration served as the evaluation metric for that particle. 

The hyperparameter search was conducted within predefined bounds: the 
learning rate ranged from 0.0001 to 0.01, and the GRU hidden layer size varied between 
64 and 256 units. The PSO process consisted of 10 particles over 5 iterations, with 
behavioral parameters set as follows: cognitive component (c1) = 0.5, social component 
(c2) = 0.3, and inertia weight (w) = 0.9. Leveraging the pyswarms Python library, the 
algorithm iteratively adjusted particle positions to identify the most effective 
configuration. The final set of optimal hyperparameters was then adopted for the 
model’s full training process. 

Overall Architecture of the CNN-RNN-Attention-PSO Framework. Figure 2 
shows how the proposed framework integrates a hybrid deep learning model with a 
metaheuristic optimization technique to effectively detect deepfake videos. The 
architecture consists of two main components: (1) the CNN-RNN-Attention 
classification model, and (2) the Particle Swarm Optimization (PSO) module used for 
hyperparameter tuning. 

 
 



 
Volume 2, Issue 1   Isabela State University Linker: 

Journal of Engineering, Computing, and Technology 
 

104 
 

 
Figure 2. Overall Architecture of the CNN-RNN-Attention-PSO Framework 

 
In the core model, CNNs extracted spatial features from individual video frames 

using two convolutional layers with ReLU activation and max pooling. These spatial 
features were flattened and passed into a Bidirectional Long Short-Term Memory 
(LSTM) network to capture temporal dependencies. A Temporal Attention Mechanism 
was applied to the LSTM outputs, dynamically weighting each time step to emphasize 
the most informative frames. Finally, the attention-weighted output was fed into a fully 
connected layer to perform binary classification, distinguishing between real and fake 
video content. 

To optimize model performance, Particle Swarm Optimization (PSO) was 
employed to search for the best values for two critical hyperparameters: the learning 
rate and the number of GRU units in the recurrent layer. PSO operates by simulating 
a swarm of particles, each representing a unique hyperparameter configuration. The 
particles explored the search space iteratively, guided by individual and collective 
experience, to minimize the model’s training loss. The best-performing configuration 

was then used for full model training. 
This integrated approach ensured that both model architecture and 

hyperparameter selection contribute synergistically to maximizing classification 
accuracy and generalization performance. 

Training Process. The model was developed using a supervised learning 
strategy, employing cross-entropy loss as the objective function—ideal for binary 
classification problems like deepfake detection. Training was carried out across several 
epochs, where each batch consisted of input frames paired with their corresponding 
labels. These inputs were initially moved to the GPU, and the forward pass was 
executed using mixed precision via PyTorch’s torch.amp.autocast, enabling operations 
in float16 format to improve efficiency and reduce memory consumption. To maintain 
numerical stability during backpropagation, the GradScaler tool was used to scale the 
loss before applying gradient descent. An externally defined optimizer handled the 
parameter updates. During training, the model’s accuracy was monitored by tracking 
the number of correct predictions. 
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The model was evaluated on the validation dataset after each training epoch, 
with gradient updates turned off to minimize computational overhead. During this 
phase, predictions were generated for each batch, and both loss and accuracy were 
calculated. Key metrics, including learning rate, validation accuracy, validation loss, 
training loss, and training accuracy, were measured at the conclusion of each epoch. 
These ongoing assessments provided vital information about the model’s convergence 
and performance, allowing for better training management and more informed 
modifications. 
 Model Evaluation. Once the optimal hyperparameters were determined through 
PSO, the finalized CNN-RNN-Attention model was tested on an independent dataset to 

evaluate its classification accuracy. This evaluation was conducted using a specific 
function that ran the model in inference mode, with gradient calculations turned off to 
improve computational efficiency. 

During evaluation, batches of unseen video data were passed through the model 
to generate output logits. These outputs were then converted into class probabilities 
using a softmax activation function. Predictions were determined by selecting the 
highest probability class, and all predicted labels, true labels, and probability scores 
were stored for further metric computation. Several performance metrics were used to 
ensure a comprehensive assessment. The overall correctness of predictions was 
measured by accuracy. The formula is shown below: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

 
Equation 2. Accuracy Formula 

 

Although it provides a general overview of model performance, it may present 
misleading results, specifically in cases of class imbalance. Therefore, additional 
evaluation metrics were employed to deliver a more comprehensive analysis. To obtain 
a better understanding, metrics like F1-score, precision, and recall were computed. 
Precision refers to the ratio of correctly predicted positive instances to all predicted 
positives. This is especially critical in reducing false positives since wrongly tagging 
genuine videos as deepfakes can cause negative impacts. The accuracy formula is given 

as: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃  +  𝐹𝑃 
 

 
Equation 3. Precision Formula 

 
Recall evaluates how effectively the model can detect all true positive cases. In 

deepfake detection, it plays a vital role in ensuring that manipulated videos are 
accurately flagged and not incorrectly labeled as authentic, which could undermine the 
reliability of the detection system. The formula used to compute recall is: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃  +  𝐹𝑁 
 

 
Equation 4. Recall Formula 
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The F1-score shows the average of recall and precision, combining both into a 
unified measure. It is especially beneficial in situations where reducing both false 
negatives and false positives is equally critical. Equation 4 shows the score formula: 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

 
Equation 5. F1-Score Formula 

 
These metrics were calculated using a weighted average to account for any class 

imbalance between real and deepfake videos. A detailed classification report further 
analyzed the performance of the model across each class. 

All evaluation outputs were saved in a designated directory, ensuring that the 
results could be reviewed, validated, and included in the final project documentation. 
This systematic evaluation process helped confirm the model’s strengths, revealed 
areas for further enhancement, and emphasized the importance of using multiple 
performance metrics in deepfake detection. 

 
 

Figure 3. Confusion Matrix 
 
Figure 3 shows the confusion matrix that displays the distribution of true versus 

predicted labels to support interpretability and transparency; various visualizations 
were generated and saved. A confusion matrix shows a clear overview of the 
performance of the model in classifying real and fake videos. Of all the fake videos, 30 
were mistakenly identified as real (false negatives) and 816 were correctly identified as 
fake (true negatives). On the other hand, out of the real videos, 484 were correctly 
identified as real (true positives), whereas 227 were incorrectly classified as fake (false 
positives). 

This indicates that the model demonstrates strong performance in detecting fake 
content, with very few false negatives. However, there is a notable number of false 
positives, meaning some real videos are being mistakenly flagged as fake. This may 
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suggest a slightly conservative bias toward classifying videos as fake, possibly as a 
precautionary response to potential deepfake threats. Overall, the confusion matrix 
reflects a well-performing model with high true classification rates for both classes. The 
relatively higher number of false positives compared to false negatives could be 
addressed with further tuning or through post-processing to improve real-video 
recognition without compromising the detection of deepfakes. 
 
Phase 3: System Implementation and Deployment 

After model development and evaluation, the trained model was prepared for 
deployment to serve as a backend system for real-time deepfake detection. 

 

 
 

Figure 4. Web-Based User Interface 
 

Figure 4 shows that the web-based interface of the system serves as the main 
access point for users to interact with the deepfake detection model. It was designed to 
allow a user to upload a video file directly from their local device. Upon selecting a video, 
the system immediately begins processing without requiring any further input, 
ensuring a straightforward and uninterrupted user experience. 

Once a video is uploaded, the system performs preprocessing in the background. 
This includes extracting individual frames from the video, which are essential for frame-
wise analysis by the deep learning model. The preprocessing step is automated and 
hidden from the user to maintain the simplicity of the interface while ensuring the input 
is correctly prepared for inference. 

After preprocessing and model inference, the interface displays a video preview 
along with two prediction bars. These bars show the confidence scores for both the 
“Deepfake” and “Real” classes. Each bar is color-coded and labeled with the 
corresponding percentage, providing users with a quick visual understanding of the 
model’s assessment of the uploaded video. 

System Design and Workflows. The system initiates a structured workflow to 
process and classify the input. First, the video is received by the backend server and 
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saved temporarily. The system then extracts individual frames from the video using 
OpenCV, and each frame undergoes preprocessing, including resizing and 
normalization, to prepare it for model inference. These frames are passed through the 
trained CNN-RNN-Attention model, which performs spatial and temporal analysis. After 
processing all frames, the model aggregates the results and returns a confidence score 
for both the “Deepfake” and “Real” classes. These results are then displayed on the user 
interface as visual prediction bars, along with a preview of the uploaded video. 

Application Development. The web application was developed using a 
combination of frontend and backend technologies. The backend was built using Flask, 
which served as the core framework for handling file uploads, preprocessing, and model 

inference. The deep learning model was implemented in PyTorch, while OpenCV (cv2) 
was used for extracting frames from uploaded videos. On the frontend, the interface 
was styled using Tailwind CSS to ensure a responsive and clean layout. JavaScript was 
integrated for dynamic behavior, such as previewing the uploaded video and updating 
prediction results in real time. This combination of technologies allowed for a 
lightweight yet functional application capable of handling real-time video analysis. 

 
Ethical Considerations 
 This study adhered to rigorous ethical standards to ensure the protection of data, 
integrity of the research process, and responsible use of artificial intelligence 
technologies. Because the study did not involve direct interaction with human 
participants, considerations such as obtaining informed consent, ensuring anonymity, 
and maintaining confidentiality were not required. However, ethical responsibility was 
upheld in terms of data handling, model deployment, and potential societal impact. 

The Celeb-DF v2 dataset used in this research is a publicly available benchmark 
dataset, and its usage complies with academic research standards. The dataset was 
handled with strict consideration of privacy and non-maleficence, ensuring that the 
model developed was used solely for educational, research, and security purposes. 

 
Results and Discussion 

 The hybrid CNN-RNN model begins with two convolutional layers, each using 
ReLU activation and max pooling to retrieve the spatial features from individual video 

frames. These layers were designed to detect low- to mid-level visual patterns, such as 
edges, textures, and facial characteristics. After extraction, the features were flattened 
and organized into sequences that were input into a bidirectional Long Short-Term 
Memory (LSTM) network. This LSTM captures temporal dependencies between frames, 
helping the model detect motion inconsistencies that may indicate tampering. 

To enhance this temporal understanding, a Temporal Attention Mechanism was 
integrated. This mechanism dynamically assigns different weights to each frame in the 
sequence, enabling the model to focus on the most informative temporal features while 
downplaying irrelevant or misleading ones. The attention-weighted context vector is 
then passed to a fully connected layer that produces a binary output: real or deepfake. 

To optimize the model’s learning behavior and further boost performance, Particle 
Swarm Optimization (PSO) was employed. PSO was used to fine-tune key 
hyperparameters—specifically, the learning rate and hidden unit count for the LSTM. 
PSO mimics social behaviors in nature (e.g., bird flocking or fish schooling) to iteratively 
explore the parameter space. In this study, five iterations with ten particles were 
executed, and the best-performing combination—a learning rate of 0.000196 and 223 
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hidden units—was identified based on minimized training loss. This automated tuning 
process enhanced both the convergence speed and final accuracy of the model. 

 
Table 1. Model Architecture 

 

Layer (type) Output Shape Param # 

Conv2d (3→32, 3x3) (None, 32, 112, 112) 896 
ReLU (None, 32, 112, 112) 0 

MaxPool2d (2x2) (None, 32, 56, 56) 0 
Conv2d (32→64, 3x3) (None, 64, 56, 56) 18,496 

ReLU (None, 64, 56, 56) 0 
MaxPool2d (2x2) (None, 64, 28, 28) 0 

Reshape → Flattened (None, 64x56x56) - 
LSTM (bidirectional) (None, 256) 206,158,336 
Attention (Linear) (None, 1) 257 

Context Vector (None, 256) - 
(Weighted)   

Fully Connected (Linear) (None, 2) 514 

 
Figure 5 shows that the training accuracy steadily increased across 10 epochs, 

reaching 84.5%, while the validation accuracy stabilized around 82.3%. The model does 
not overfit and has good generalization, as evidenced by the near alignment of both 
curves. The slight fluctuations in validation accuracy are typical in video classification 
due to frame variability, but the consistent performance suggests that the model 
effectively learned temporal and spatial patterns. This stability can be attributed to the 
use of a bidirectional LSTM with attention and optimized hyperparameters through 
Particle Swarm Optimization. 
 

 
Figure 5. Training and Validation Accuracy 
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Figure 6 demonstrates a constant decrease in training loss, reaching 0.345 by 
the final epoch, while validation loss stabilized around 0.45. The gradual convergence 
of both curves indicates effective model training with minimal overfitting. Despite slight 
fluctuations in validation loss, the overall downward trend confirms that the model is 
learning efficiently and generalizing well to unseen data. 
 

 
Figure 6. Training and Validation Loss 

 
Table 2 indicates the performance of the CNN-RNN model with Particle Swarm 

Optimization and Temporal Attention. The model’s 83.49% accuracy rate and 85.51% 
precision rate reflected how well the model could detect deepfake content. The model’s 
ability to recognize real positive samples is demonstrated by the recall value, which is 
likewise 83.49%. The F1-score of 83.03%, on the other hand, shows that precision and 
recall have a balanced relationship. These results confirm that the hybrid method 
successfully uses both temporal and spatial data, leading to reliable classification 
performance for the identification of deepfake videos. 
 
Table 2. Performance Metrics of the Hybrid Model 
 

Model Accuracy Precision Recall F1-Score 

CNN-RNN with Temporal 
Attention and PSO 

83.49% 85.51% 83.49% 83.03% 

 
Contribution of Temporal Attention and PSO 

The superior performance of the proposed model can be attributed to the 
synergistic integration of two key components: the Temporal Attention Mechanism and 
Particle Swarm Optimization (PSO). The Temporal Attention Mechanism allows the 
model to assign varying importance to different video frames, enabling it to concentrate 
on frames that contain more discriminative features relevant to deepfake detection. 
This dynamic weighting enhances the model’s ability to capture distinct temporal 
patterns, resulting in improved recall and reduced false negatives—especially a critical 
factor in identifying subtle manipulations in deepfake videos. 
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Simultaneously, PSO contributes by automatically tuning vital hyperparameters 
such as the learning rate and the number of LSTM units. This optimization ensures that 
the model is trained with configurations that offer better convergence and stability, 
thereby reducing overfitting and improving generalization across diverse samples. 

Table 3. Performance Comparison with Existing Methods 

As shown in Table 3, the combined effect of Temporal Attention and PSO results 
in notable improvements over baseline models, including higher accuracy (83.49%), 
precision (85.51%), recall (83.49%), and F1-score (83.03%). These enhancements 
validate the effectiveness of both architectural and optimization strategies in elevating 
the model’s overall detection capability. 
 

Conclusion and Future Works 
The hybrid framework for identifying deepfake content presented in this study 

combines the Temporal Attention (TA) mechanism with Recurrent Neural Networks 
(RNN) and Convolutional Neural Networks (CNN).  Using Particle Swarm Optimization 
(PSO), key hyperparameters were optimized to increase the model’s efficiency.  Often 
present in manipulated video data, the architecture was made to efficiently capture 
temporal and spatial inconsistencies. With an accuracy of 83.49%, precision of 85.51%, 
recall of 83.49%, and F1-score of 83.03%, the model showed promising performance. 
These metrics outperformed a number of current models, such as conventional CNN-
RNN structures and XceptionNet. Important time-based features were highlighted by 

the Temporal Attention module, and PSO was crucial in streamlining the training 
procedure for quicker convergence. 

According to the classification report, the model showed high performance in 
detecting manipulated videos—especially in the “Fake” class—though some limitations 
were noted in correctly identifying genuine content. This highlights potential areas for 
future improvement. Overall, the results affirm the reliability and effectiveness of the 
hybrid model for real-world deepfake detection applications. 

Despite the model’s promising outcomes, there are still a number of areas that 
require investigation and improvement. The current use of fixed frame sampling (five 
frames per video) may limit temporal resolution and overlook important transitional 
features essential for identifying subtle manipulations in deepfakes. Exploring adaptive 
or dynamic sampling methods could improve the model’s ability to capture temporal 
dependencies more effectively across entire video sequences. 

In addition, to better evaluate the model’s performance, future testing may 
include a wider array of datasets (such as Celeb-DF and DeeperForensics-1.0) that 
feature different manipulation styles and demographic variations, helping to assess its 

Model Accuracy Precision Recall F1-Score 

XceptionNet 81% 82% 79% 80% 

LSTM (Frame-level 

Features) 

78.50% 80% 76% 78% 

CNN-GRU (No 
Attention) 

80.20% 83% 80% 81% 

Proposed CNN-RNN 
+ TA + PSO 

83.49% 85.51% 83.49% 83.03% 
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generalization capability. Advancing the model for real-time applications is a key area 
for development, especially in high-speed environments like social media and video 
conferencing, where immediate detection is crucial. 

Moreover, utilizing explainable AI (XAI) methods could provide insights into which 
spatial and temporal elements influence the model’s outputs, enhancing its 
transparency and user trust. Combining both audio and visual data can also strengthen 
the system’s ability to detect deepfakes, particularly in situations where visual 
alterations are subtle but audible clues are present. As deepfake generation techniques 
become more advanced, strengthening the model against adversarial inputs and 
synthetic countermeasures remains a critical area for ongoing research. 
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