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The rapid advancement of deepfake technology
presents a growing threat to information integrity and
online security. To address this, this research
proposed an efficient deepfake video detection
framework that integrates Convolutional Neural
Networks (CNNs) for spatial feature extraction,
Recurrent Neural Networks (RNNs) with a temporal
attention mechanism for modeling sequential
dependencies, and Particle Swarm Optimization
(PSO) for hyperparameter tuning. The pipeline
included frame extraction, face alignment, and
feature processing using a pre-trained CNN, followed
by an RNN that emphasizes critical temporal artifacts
through attention. PSO further enhanced model
performance by optimizing key hyperparameters such
as learning rate and hidden dimensions. To evaluate
the effectiveness of the proposed model, a
comparative analysis against existing deepfake
detection methods, including XceptionNet, LSTM with
frame-level features, and CNN-GRU without
attention, was conducted. The proposed CNN-RNN
model with Temporal Attention and PSO
outperformed the baselines, demonstrating the
model’s improved generalization and reliability,
particularly in reducing false negatives, making it a
robust solution for real-world media forensics and
platform integrity.
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Introduction

The rapid advancement of machine learning has made it increasingly easy to
generate convincing fake videos, commonly known as deepfakes. These manipulated
videos, which often involve replacing a person’s face with someone else’s seamlessly,
pose a serious threat to privacy, security, and public trust. Rahman et al. (2022)
emphasized that deepfakes can appear highly realistic, deceiving even trained observers.
While some applications of this technology are intended for entertainment or
educational purposes, it has also been exploited for malicious activities such as identity
theft, cyberbullying, misinformation campaigns, and non-consensual content creation.

Deepfake detection has become a critical area of research in response to these
threats. Early works, such as MesoNet by Afchar et al. (2018), demonstrated the
feasibility of wusing compact Convolutional Neural Networks (CNNs) to detect
manipulated facial features. However, as Deepfake algorithms continue to evolve, more
sophisticated detection approaches are required.

A distinguishing characteristic of videos, as highlighted by Yu et al. (2021), is
their temporal continuity. Unlike images, videos consist of sequences of frames with
strong temporal correlation. Deepfakes often disrupt this consistency, creating artifacts
such as flickering or misaligned facial features. Guiera and Delp (2018) leveraged this
by employing Recurrent Neural Networks (RNNs) to model temporal patterns and detect
such anomalies. Building on this, researchers have explored combining CNNs with
RNNs, integrating attention mechanisms and optimization techniques to enhance
performance.

Hybrid models that integrate CNNs for spatial feature extraction and RNNs for
temporal modeling have shown promising results (Al-Adwan et al., 2023; Chen et al.,
2020). The inclusion of a temporal attention mechanism allows the model to focus on
discriminative frames, improving its ability to detect subtle manipulations (Gao et al.,
2021; Yan et al., 2020). Furthermore, Particle Swarm Optimization (PSO)—a population-
based optimization algorithm inspired by the social behavior of birds (Kennedy &
Eberhart, 1995)—has been successfully used to fine-tune hyperparameters in deep
learning models, leading to improved generalization and performance (Cunha et al.,
2024; Shami et al., 2022).

In this study, the researchers presented a unified deepfake detection framework
that integrates CNNs, RNNs with a temporal attention mechanism, and PSO. These
components were designed to work in tandem: CNNs extract spatial features from each
frame, RNNs capture temporal dependencies across frames, the attention mechanism
identifies key temporal cues indicative of manipulation, and PSO optimizes model
parameters to boost detection accuracy. The model was trained and evaluated using the
Celeb-DF dataset, with performance assessed through standard metrics such as
accuracy, precision, recall, and F1-score.

To ensure real-world applicability, the final model was deployed in a web-based
application that enabled users to identify potentially manipulated videos. This research
aimed to contribute to a more secure digital environment by advancing the capabilities
of deepfake detection through the synergy of deep learning and optimization techniques.
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Methods

Project Design

Figure 1 shows that the project adopted an experimental design implemented in
three sequential phases: (1) Data Preprocessing, (2) Model Development, and (3) System
Implementation and Deployment. This phased design allowed for modular testing and
optimization of each component before integration. The goal was to create a reliable
deepfake video detection model using a hybrid architecture enhanced by temporal
attention and optimized using Particle Swarm Optimization (PSO).
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Figure 1. Project Design
Phase 1: Data Preprocessing

Dataset Preparation. The Celeb-DF v2 dataset was selected as the benchmark
dataset for this study due to its diverse and high-quality content. It consists of 5,639
real videos collected from 59 YouTube celebrities (Celeb-real and YouTube-real) and
5,639 deepfake videos (Celeb-synthesis) generated using various synthesis models. The
dataset is publicly available and widely accepted for research purposes, making it
suitable for evaluating deepfake detection systems. Each video in the dataset was
labeled as either real (1) or fake (O).

To ensure balanced class distribution across training, validation, and testing
phases, real video samples were duplicated. The final dataset was split into 7,265
training, 1,557 validation, and 1,557 testing videos, with equal numbers of real and
deepfake videos in each subset.
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Frame Extraction. To extract frames from each video, the researchers used the
OpenCV library (cv2) in Python. Specifically, five uniformly spaced frames were
extracted per video to balance between computational efficiency and temporal
information retention. The total frame count of each video was first determined, and
the frame indices were calculated using the formula:

total frames

interval = max([f],l

Equation 1. Frame Extraction Formula

This ensures the selected frames were evenly distributed across the video’s
timeline. If a video contained fewer than five frames, zero tensors (black images) were
padded to maintain consistent input dimensions. Below is the summary of the
extraction procedure:

Load the video using cv2.VideoCapture.

Compute the total number of frames.

Determine five equally spaced frame indices using the formula above.
Extract frames at these indices using
cap.set(cv2.CAP_PROP_POS_FRAMES, index) and cap.read().

S. If fewer than five frames are available, pad with zero tensors.

Image Preprocessing. Each extracted frame underwent a series of image
processing steps implemented using the torchvision.transforms library. The complete
transformation pipeline was as follows:

1. Convert to PIL Image: Raw frames extracted as NumPy arrays via OpenCV
were converted to PIL image format to enable compatibility with PyTorch
transforms.

2. Resize: Each frame was resized to 224 x 224 pixels to ensure uniformity
across all inputs and to match the input dimension required by the pre-
trained CNN backbone.

3. ToTensor: Resized images were converted into PyTorch tensors, scaling
pixel values to the range [0,1][0,1].

4. Normalize: Tensors were normalized using the ImageNet mean [0.485,
0.456,0.406] and standard deviation [0.229, 0.224, 0.225], aligning the
input distribution with pre-trained model expectations and improving
training stability.

This transformation pipeline was applied consistently across all training,
validation, and testing data, and is reproducible using the following transform
definition:

transform = transforms.Compose([transforms.ToPILImage(),

transforms.Resize((224, 224)), transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229,
0.224, 0.225])

Dataset Splitting. The processed video dataset was divided into 70% for
training, 15% for validation, and 15% for testing using the train_test_split function
from scikit-learn, ensuring that class distributions remained balanced across the
splits.

el S
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Custom Dataset Loader. A PyTorch Dataset class (VideoDataset) was created
to load the video frames and labels. DataLoaders with custom collate_fn functions were
used for batching sequences of frames during training and evaluation.

Phase 2: Model Development

During this stage, a tailored neural network was designed and trained
specifically for deepfake detection. The model integrated both spatial and temporal
analysis through an attention-based architecture and was further enhanced using
Particle Swarm Optimization (PSO).

CNN-RNN-Attention Architecture. The proposed model was built on a hybrid
architecture of Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM)
units, and a Temporal Attention Mechanism. With ReLU activation and max pooling,
the CNN module’s two convolutional layers are intended to extract pertinent spatial
features from every frame. These features were subsequently flattened and input into
a bidirectional LSTM, allowing the model to learn temporal dependencies across frames.
Following this, a temporal attention mechanism was introduced to assign dynamic
weights to each LSTM output, permitting the model to focus on significant frames. In
the final stage, a fully connected layer interprets the attention-weighted context
vector—derived from the LSTM outputs—to perform binary classification, determining
whether the video content is real or artificially generated.

Particle Swarm Optimization. In order to enhance the performance of the CNN-
RNN-Attention model, Particle Swarm Optimization (PSO) was applied in order to
automatically discover the optimal values of two very important hyperparameters: the
learning rate and the number of units in the GRU layer. PSO is a population-based
metaheuristic search inspired by the behavior of nature-inspired swarms. Every
“particle” in PSO explores the solution space by changing its position based on its own
memory and the overall knowledge of the swarm.

In this research, PSO aimed to reduce training loss, which was defined as the
objective (fitness) function. Each particle, representing a unique pairing of learning rate
and GRU dimension, initiated a new model configuration trained over 10 epochs using
the Adam optimizer and a cross-entropy loss function. The resulting loss value for each
configuration served as the evaluation metric for that particle.

The hyperparameter search was conducted within predefined bounds: the
learning rate ranged from 0.0001 to 0.01, and the GRU hidden layer size varied between
64 and 256 units. The PSO process consisted of 10 particles over 5 iterations, with
behavioral parameters set as follows: cognitive component (c1) = 0.5, social component
(c2) = 0.3, and inertia weight (w) = 0.9. Leveraging the pyswarms Python library, the
algorithm iteratively adjusted particle positions to identify the most -effective
configuration. The final set of optimal hyperparameters was then adopted for the
model’s full training process.

Overall Architecture of the CNN-RNN-Attention-PSO Framework. Figure 2
shows how the proposed framework integrates a hybrid deep learning model with a
metaheuristic optimization technique to effectively detect deepfake videos. The
architecture consists of two main components: (1) the CNN-RNN-Attention
classification model, and (2) the Particle Swarm Optimization (PSO) module used for
hyperparameter tuning.
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Figure 2. Overall Architecture of the CNN-RNN-Attention-PSO Framework

In the core model, CNNs extracted spatial features from individual video frames
using two convolutional layers with ReLU activation and max pooling. These spatial
features were flattened and passed into a Bidirectional Long Short-Term Memory
(LSTM) network to capture temporal dependencies. A Temporal Attention Mechanism
was applied to the LSTM outputs, dynamically weighting each time step to emphasize
the most informative frames. Finally, the attention-weighted output was fed into a fully
connected layer to perform binary classification, distinguishing between real and fake
video content.

To optimize model performance, Particle Swarm Optimization (PSO) was
employed to search for the best values for two critical hyperparameters: the learning
rate and the number of GRU units in the recurrent layer. PSO operates by simulating
a swarm of particles, each representing a unique hyperparameter configuration. The
particles explored the search space iteratively, guided by individual and collective
experience, to minimize the model’s training loss. The best-performing configuration
was then used for full model training.

This integrated approach ensured that both model architecture and
hyperparameter selection contribute synergistically to maximizing classification
accuracy and generalization performance.

Training Process. The model was developed using a supervised learning
strategy, employing cross-entropy loss as the objective function—ideal for binary
classification problems like deepfake detection. Training was carried out across several
epochs, where each batch consisted of input frames paired with their corresponding
labels. These inputs were initially moved to the GPU, and the forward pass was
executed using mixed precision via PyTorch’s torch.amp.autocast, enabling operations
in float16 format to improve efficiency and reduce memory consumption. To maintain
numerical stability during backpropagation, the GradScaler tool was used to scale the
loss before applying gradient descent. An externally defined optimizer handled the
parameter updates. During training, the model’s accuracy was monitored by tracking
the number of correct predictions.
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The model was evaluated on the validation dataset after each training epoch,
with gradient updates turned off to minimize computational overhead. During this
phase, predictions were generated for each batch, and both loss and accuracy were
calculated. Key metrics, including learning rate, validation accuracy, validation loss,
training loss, and training accuracy, were measured at the conclusion of each epoch.
These ongoing assessments provided vital information about the model’s convergence
and performance, allowing for better training management and more informed
modifications.

Model Evaluation. Once the optimal hyperparameters were determined through
PSO, the finalized CNN-RNN-Attention model was tested on an independent dataset to
evaluate its classification accuracy. This evaluation was conducted using a specific
function that ran the model in inference mode, with gradient calculations turned off to
improve computational efficiency.

During evaluation, batches of unseen video data were passed through the model
to generate output logits. These outputs were then converted into class probabilities
using a softmax activation function. Predictions were determined by selecting the
highest probability class, and all predicted labels, true labels, and probability scores
were stored for further metric computation. Several performance metrics were used to
ensure a comprehensive assessment. The overall correctness of predictions was
measured by accuracy. The formula is shown below:

| ~ TP + TN
Ccuracy =Tp ¥ TN + FP + FN

Equation 2. Accuracy Formula

Although it provides a general overview of model performance, it may present
misleading results, specifically in cases of class imbalance. Therefore, additional
evaluation metrics were employed to deliver a more comprehensive analysis. To obtain
a better understanding, metrics like F1-score, precision, and recall were computed.
Precision refers to the ratio of correctly predicted positive instances to all predicted
positives. This is especially critical in reducing false positives since wrongly tagging
genuine videos as deepfakes can cause negative impacts. The accuracy formula is given
as:

recision = — 17
recision = oo
Equation 3. Precision Formula

Recall evaluates how effectively the model can detect all true positive cases. In
deepfake detection, it plays a vital role in ensuring that manipulated videos are

accurately flagged and not incorrectly labeled as authentic, which could undermine the
reliability of the detection system. The formula used to compute recall is:

Recall = — %
CCA =Tp ¥ FN

Equation 4. Recall Formula
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The F1-score shows the average of recall and precision, combining both into a
unified measure. It is especially beneficial in situations where reducing both false
negatives and false positives is equally critical. Equation 4 shows the score formula:

Precision X Recall

F1-— =2X
Score Precision + Recall

Equation 5. F1-Score Formula

These metrics were calculated using a weighted average to account for any class
imbalance between real and deepfake videos. A detailed classification report further
analyzed the performance of the model across each class.

All evaluation outputs were saved in a designated directory, ensuring that the
results could be reviewed, validated, and included in the final project documentation.
This systematic evaluation process helped confirm the model’s strengths, revealed
areas for further enhancement, and emphasized the importance of using multiple
performance metrics in deepfake detection.

Confusion Matrix
800
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- 400
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- 300

-200

- 100

Fake Real
Predicted Labels

Figure 3. Confusion Matrix

Figure 3 shows the confusion matrix that displays the distribution of true versus
predicted labels to support interpretability and transparency; various visualizations
were generated and saved. A confusion matrix shows a clear overview of the
performance of the model in classifying real and fake videos. Of all the fake videos, 30
were mistakenly identified as real (false negatives) and 816 were correctly identified as
fake (true negatives). On the other hand, out of the real videos, 484 were correctly
identified as real (true positives), whereas 227 were incorrectly classified as fake (false
positives).

This indicates that the model demonstrates strong performance in detecting fake
content, with very few false negatives. However, there is a notable number of false
positives, meaning some real videos are being mistakenly flagged as fake. This may
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suggest a slightly conservative bias toward classifying videos as fake, possibly as a
precautionary response to potential deepfake threats. Overall, the confusion matrix
reflects a well-performing model with high true classification rates for both classes. The
relatively higher number of false positives compared to false negatives could be
addressed with further tuning or through post-processing to improve real-video
recognition without compromising the detection of deepfakes.

Phase 3: System Implementation and Deployment
After model development and evaluation, the trained model was prepared for
deployment to serve as a backend system for real-time deepfake detection.

Deepfake Detector About Us
Detect Deepfake Videos
Upload a video for real-time analysis with our advanced Al model

Click to browse

Upload Video

Prediction

Deepfake: 61.88%

Real: 38.12%

Figure 4. Web-Based User Interface

Figure 4 shows that the web-based interface of the system serves as the main
access point for users to interact with the deepfake detection model. It was designed to
allow a user to upload a video file directly from their local device. Upon selecting a video,
the system immediately begins processing without requiring any further input,
ensuring a straightforward and uninterrupted user experience.

Once a video is uploaded, the system performs preprocessing in the background.
This includes extracting individual frames from the video, which are essential for frame-
wise analysis by the deep learning model. The preprocessing step is automated and
hidden from the user to maintain the simplicity of the interface while ensuring the input
is correctly prepared for inference.

After preprocessing and model inference, the interface displays a video preview
along with two prediction bars. These bars show the confidence scores for both the
“Deepfake” and “Real” classes. Each bar is color-coded and labeled with the
corresponding percentage, providing users with a quick visual understanding of the
model’s assessment of the uploaded video.

System Design and Workflows. The system initiates a structured workflow to
process and classify the input. First, the video is received by the backend server and
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saved temporarily. The system then extracts individual frames from the video using
OpenCV, and each frame undergoes preprocessing, including resizing and
normalization, to prepare it for model inference. These frames are passed through the
trained CNN-RNN-Attention model, which performs spatial and temporal analysis. After
processing all frames, the model aggregates the results and returns a confidence score
for both the “Deepfake” and “Real” classes. These results are then displayed on the user
interface as visual prediction bars, along with a preview of the uploaded video.
Application Development. The web application was developed using a
combination of frontend and backend technologies. The backend was built using Flask,
which served as the core framework for handling file uploads, preprocessing, and model
inference. The deep learning model was implemented in PyTorch, while OpenCV (cv2)
was used for extracting frames from uploaded videos. On the frontend, the interface
was styled using Tailwind CSS to ensure a responsive and clean layout. JavaScript was
integrated for dynamic behavior, such as previewing the uploaded video and updating
prediction results in real time. This combination of technologies allowed for a
lightweight yet functional application capable of handling real-time video analysis.

Ethical Considerations

This study adhered to rigorous ethical standards to ensure the protection of data,
integrity of the research process, and responsible use of artificial intelligence
technologies. Because the study did not involve direct interaction with human
participants, considerations such as obtaining informed consent, ensuring anonymity,
and maintaining confidentiality were not required. However, ethical responsibility was
upheld in terms of data handling, model deployment, and potential societal impact.

The Celeb-DF v2 dataset used in this research is a publicly available benchmark
dataset, and its usage complies with academic research standards. The dataset was
handled with strict consideration of privacy and non-maleficence, ensuring that the
model developed was used solely for educational, research, and security purposes.

Results and Discussion

The hybrid CNN-RNN model begins with two convolutional layers, each using
ReLU activation and max pooling to retrieve the spatial features from individual video
frames. These layers were designed to detect low- to mid-level visual patterns, such as
edges, textures, and facial characteristics. After extraction, the features were flattened
and organized into sequences that were input into a bidirectional Long Short-Term
Memory (LSTM) network. This LSTM captures temporal dependencies between frames,
helping the model detect motion inconsistencies that may indicate tampering.

To enhance this temporal understanding, a Temporal Attention Mechanism was
integrated. This mechanism dynamically assigns different weights to each frame in the
sequence, enabling the model to focus on the most informative temporal features while
downplaying irrelevant or misleading ones. The attention-weighted context vector is
then passed to a fully connected layer that produces a binary output: real or deepfake.

To optimize the model’s learning behavior and further boost performance, Particle
Swarm Optimization (PSO) was employed. PSO was wused to fine-tune key
hyperparameters—specifically, the learning rate and hidden unit count for the LSTM.
PSO mimics social behaviors in nature (e.g., bird flocking or fish schooling) to iteratively
explore the parameter space. In this study, five iterations with ten particles were
executed, and the best-performing combination—a learning rate of 0.000196 and 223
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hidden units—was identified based on minimized training loss. This automated tuning
process enhanced both the convergence speed and final accuracy of the model.

Table 1. Model Architecture

Layer (type) Output Shape Param #
Conv2d (3—32, 3x3) (None, 32, 112, 112) 896
ReLU (None, 32, 112, 112) 0
MaxPool2d (2x2) (None, 32, 56, 56) 0
Conv2d (32—64, 3x3) (None, 64, 56, 56) 18,496
ReLU (None, 64, 56, 56) 0
MaxPool2d (2x2) (None, 64, 28, 28) 0
Reshape — Flattened (None, 64x56x56) -
LSTM (bidirectional) (None, 256) 206,158,336
Attention (Linear) (None, 1) 257
Context Vector (None, 256) -
(Weighted)
Fully Connected (Linear) (None, 2) 514

Figure 5 shows that the training accuracy steadily increased across 10 epochs,
reaching 84.5%, while the validation accuracy stabilized around 82.3%. The model does
not overfit and has good generalization, as evidenced by the near alignment of both
curves. The slight fluctuations in validation accuracy are typical in video classification
due to frame variability, but the consistent performance suggests that the model
effectively learned temporal and spatial patterns. This stability can be attributed to the
use of a bidirectional LSTM with attention and optimized hyperparameters through
Particle Swarm Optimization.

Training and Validation Accuracy
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0.775 1

Accuracy
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—— Training Accuracy
—— Validation Accuracy
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Epochs

Figure 5. Training and Validation Accuracy
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Figure 6 demonstrates a constant decrease in training loss, reaching 0.345 by
the final epoch, while validation loss stabilized around 0.45. The gradual convergence
of both curves indicates effective model training with minimal overfitting. Despite slight
fluctuations in validation loss, the overall downward trend confirms that the model is
learning efficiently and generalizing well to unseen data.

Training and Validation Loss

= Training Loss
—— Validation Loss
0.60

0.45 A

0.40 A

0.35

T r T T T
2 4 6 B8 10
Epochs

Figure 6. Training and Validation Loss

Table 2 indicates the performance of the CNN-RNN model with Particle Swarm
Optimization and Temporal Attention. The model’s 83.49% accuracy rate and 85.51%
precision rate reflected how well the model could detect deepfake content. The model’s
ability to recognize real positive samples is demonstrated by the recall value, which is
likewise 83.49%. The F1-score of 83.03%, on the other hand, shows that precision and
recall have a balanced relationship. These results confirm that the hybrid method
successfully uses both temporal and spatial data, leading to reliable classification
performance for the identification of deepfake videos.

Table 2. Performance Metrics of the Hybrid Model

Model Accuracy Precision Recall F1-Score
CNN-RNN with Temporal 83.49% 85.51% 83.49% 83.03%
Attention and PSO

Contribution of Temporal Attention and PSO

The superior performance of the proposed model can be attributed to the
synergistic integration of two key components: the Temporal Attention Mechanism and
Particle Swarm Optimization (PSO). The Temporal Attention Mechanism allows the
model to assign varying importance to different video frames, enabling it to concentrate
on frames that contain more discriminative features relevant to deepfake detection.
This dynamic weighting enhances the model’s ability to capture distinct temporal
patterns, resulting in improved recall and reduced false negatives—especially a critical
factor in identifying subtle manipulations in deepfake videos.
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Simultaneously, PSO contributes by automatically tuning vital hyperparameters
such as the learning rate and the number of LSTM units. This optimization ensures that
the model is trained with configurations that offer better convergence and stability,
thereby reducing overfitting and improving generalization across diverse samples.

Table 3. Performance Comparison with Existing Methods

Model Accuracy Precision Recall F1-Score
XceptionNet 81% 82% 79% 80%
LSTM (Frame-level 78.50% 80% 76% 78%
Features)
CNN-GRU (No 80.20% 83% 80% 81%
Attention)
Proposed CNN-RNN 83.49% 85.51% 83.49% 83.03%
+ TA + PSO

As shown in Table 3, the combined effect of Temporal Attention and PSO results
in notable improvements over baseline models, including higher accuracy (83.49%),
precision (85.51%), recall (83.49%), and Fl-score (83.03%). These enhancements
validate the effectiveness of both architectural and optimization strategies in elevating
the model’s overall detection capability.

Conclusion and Future Works

The hybrid framework for identifying deepfake content presented in this study
combines the Temporal Attention (TA) mechanism with Recurrent Neural Networks
(RNN) and Convolutional Neural Networks (CNN). Using Particle Swarm Optimization
(PSO), key hyperparameters were optimized to increase the model’s efficiency. Often
present in manipulated video data, the architecture was made to efficiently capture
temporal and spatial inconsistencies. With an accuracy of 83.49%, precision of 85.51%,
recall of 83.49%, and F1-score of 83.03%, the model showed promising performance.
These metrics outperformed a number of current models, such as conventional CNN-
RNN structures and XceptionNet. Important time-based features were highlighted by
the Temporal Attention module, and PSO was crucial in streamlining the training
procedure for quicker convergence.

According to the classification report, the model showed high performance in
detecting manipulated videos—especially in the “Fake” class—though some limitations
were noted in correctly identifying genuine content. This highlights potential areas for
future improvement. Overall, the results affirm the reliability and effectiveness of the
hybrid model for real-world deepfake detection applications.

Despite the model’s promising outcomes, there are still a number of areas that
require investigation and improvement. The current use of fixed frame sampling (five
frames per video) may limit temporal resolution and overlook important transitional
features essential for identifying subtle manipulations in deepfakes. Exploring adaptive
or dynamic sampling methods could improve the model’s ability to capture temporal
dependencies more effectively across entire video sequences.

In addition, to better evaluate the model’s performance, future testing may
include a wider array of datasets (such as Celeb-DF and DeeperForensics-1.0) that
feature different manipulation styles and demographic variations, helping to assess its
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generalization capability. Advancing the model for real-time applications is a key area
for development, especially in high-speed environments like social media and video
conferencing, where immediate detection is crucial.

Moreover, utilizing explainable Al (XAI) methods could provide insights into which
spatial and temporal elements influence the model’s outputs, enhancing its
transparency and user trust. Combining both audio and visual data can also strengthen
the system’s ability to detect deepfakes, particularly in situations where visual
alterations are subtle but audible clues are present. As deepfake generation techniques
become more advanced, strengthening the model against adversarial inputs and
synthetic countermeasures remains a critical area for ongoing research.
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