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This study explored deepfake audio detection using
English and Tagalog datasets to enhance multilingual
speech classification. The rise of synthetic media,
particularly deepfake audio, raises concerns about
misinformation, security, and authenticity. To
address this, the researchers developed a web-based
detection system using a hybrid Convolutional Neural
Network and Long Short-Term Memory Model (CNN-
LSTM) model, which captured spatial and temporal
features for accurate classification. The approach
leveraged Mel spectrograms, convolutional layers for
spatial patterns, and LSTM networks for temporal
dependencies. Trained on an augmented dataset of
over 176,000 samples and fine-tuned using
TensorFlow, the model achieved 98.65% accuracy,
with a precision of 98.60% and a recall 0of 98.76%. The
system employed class weighting to address
imbalance and used mixed-precision training for
efficiency. Its architecture included Conv2D layers
with Batch Normalization and MaxPooling, followed
by TimeDistributed Dense layers and an LSTM for
sequential modeling. Regularization and callbacks
optimized performance, which was evaluated using
accuracy, precision, recall, F1-score, and a confusion
matrix. Results confirmed its efficacy in
distinguishing real and Al-generated voices,
mitigating risks from synthetic speech. Future work
may refine dataset diversity and optimize system
responsiveness for broader real-world
implementation.
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Introduction

The rapid advancement of artificial intelligence (Al) has led to the rise of deepfake
technologies, especially in audio synthesis. Deepfake audio, generated by sophisticated
Al models, poses growing challenges in media authentication, public trust, and
cybersecurity (Dwivedi et al., 2023). With synthetic speech becoming increasingly
realistic, traditional manual detection methods are no longer sufficient to reliably
distinguish between real and Al-generated voices. This presents serious implications,
including the spread of misinformation, fraud, and identity theft, which underscore the
urgent need for automated detection systems (Al-Khazraji et al., 2023; Vo et al., 2022).

Recent studies have proposed a variety of approaches, ranging from spectrogram-
based classifiers to end-to-end speech verification models. However, many of these
systems are developed and tested using monolingual datasets, limiting their
generalizability across languages and accents. Multilingual detection remains a
significant challenge due to the variability in phonetics, prosody, and speech patterns.
Moreover, adversarial attacks—where Al systems are intentionally manipulated to
bypass detection—further complicate efforts to secure audio-based systems (Sunil et al.,
2025). These issues are often underexplored in current literature, especially in the
context of real-time and multilingual detection scenarios.

To address these challenges, this study proposes a deepfake audio detection
system trained on a large-scale, multilingual dataset containing over 176,000 real and
Al-generated audio samples in both English and Tagalog. By leveraging a hybrid CNN-
LSTM architecture, the system captured both spatial features from Mel spectrograms
using convolutional layers and temporal patterns using LSTM networks (Cinar, 2023;
Heidari et al., 2023). Unlike existing models limited to single-language datasets or
single-architecture designs, this approach integrated multilingual datasets and
advanced augmentation techniques such as pitch shifting, time stretching, and noise
injection to improve generalization. Furthermore, the system was designed with
scalability and usability in mind, implemented as a web-based platform for accessible
real-time detection.

The novelty of this study lies in its combination of CNN and LSTM layers applied
to multilingual deepfake detection, along with the integration of web deployment for
public use. This not only addresses language diversity but also the growing
sophistication of deepfake generation models. This work contributes to the ongoing
effort in building more inclusive, secure, and scalable Al systems by demonstrating how
multilingual training, data augmentation, and sequential modeling can be integrated to
improve detection in practical applications (Amin et al., 2024; Guo et al., 2024; Mathew
et al., 2024).

Methods
Project Design
This study is divided into three main phases: data preprocessing, model
development, and system implementation and deployment. Each phase outlines the
step-by-step process from collecting and preparing the dataset to training a deep
learning model and integrating it into a web-based system.
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Figure 1. Project Design

Phase 1: Data Preprocessing

This phase focused on preparing a multilingual dataset for model training. A total
of 176,000 audio samples were collected and processed. The samples were evenly
distributed between real human speech and Al-generated voices in both English and
Tagalog, allowing the model to generalize across languages.

Data Collection. Real speech was gathered from public datasets and social
media clips, while Al-generated samples were created using various text-to-speech
models. The dataset included speakers with different accents, genders, and noise
conditions to simulate real-world diversity. All files were stored in Kaggle Cloud Storage
for remote accessibility. Although stored on the cloud, model training was conducted
locally using VS Code.

To efficiently store and manage this extensive dataset, Kaggle Cloud Storage was
utilized, allowing seamless access to the audio files for further processing. Although the
dataset was stored in Kaggle, the model training process was conducted in a local
computing environment using VS Code. Each audio file was systematically labeled and
categorized to ensure a clear distinction between real and Al-generated speech, forming
the foundation for a successful supervised learning approach.

The raw audio data came in different formats (e.g., MP3, WAV, M4A), sampling
rates, and bit depths. To standardize them, all files were converted to mono-channel
WAV format at 16 kHz using Librosa and Pydub. Noise was also a significant concern—
samples often contained background interference like crowd noise or static. Reshape
and Batch normalization techniques were applied to minimize such inconsistencies
while retaining speech integrity.

Audio Segmentation. Since the collected audio files varied in length, with some
exceeding five minutes, segmentation was necessary to create uniform samples suitable
for deep learning. A custom Python script was developed using the Librosa and Pydub
libraries to automatically split long recordings into shorter segments of two to five
seconds. Silent regions and excessively clipped portions were detected and removed
using Librosa’s silence detection algorithm, ensuring that each extracted segment
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contained meaningful speech information. This step was essential in maintaining the
quality of training data and eliminating unnecessary noise or prolonged silence that
could negatively impact model performance.

Data Splitting. To ensure a balanced and unbiased training process, three
subsets of the dataset were created: 10% for testing, 10% for validation, and 80% for
training. The splitting process was performed using Scikit-learn’s train_test_split
function, ensuring that each subset maintained an even distribution of real and Al-
generated speech samples. Shuffling was applied before splitting to prevent sequential
biases in the dataset, ensuring that the model did not learn patterns based on file order
rather than actual speech characteristics.

Data Augmentation. To increase diversity and prevent overfitting, audio samples
were augmented using Librosa and Audiomentations. The training dataset was
subjected to a number of data augmentation approaches in order to improve model
generalization and avoid overfitting. To add variability to the dataset, the following
changes were made using the Librosa and Audiomentations libraries:

Pitch shifting was applied by adjusting the pitch of audio files by 2 semitones
using Librosa.effects.pitch_shift(). This helped the model recognize speech variations
without being overly sensitive to specific vocal tones.

Time stretching was implemented by modifying the playback speed within a
10% range using Librosa.effects.time_stretch(), simulating different speech rates. This
specific augmentation is particularly valuable for deepfake detection, as many synthetic
speech systems struggle to maintain natural temporal consistency.

Noise injection was used to add low-level Gaussian noise, mimicking real-world
recording conditions where background noise might be present. Volume scaling was
performed by randomly increasing or decreasing the amplitude of audio samples by up
to 20%, helping the model handle variations in microphone sensitivity.

These augmentations were applied dynamically during the training phase,
ensuring that each batch contained a diverse set of transformed speech samples without
altering their semantic meaning.

Feature Extraction and Normalization. Each segmented and augmented audio
file was converted into a Mel spectrogram representation using Librosa’s mel
spectrogram function. The Mel spectrogram provides a visual representation of sound
frequencies over time, which serves as input for the CNN component of the model. To
standardize the input data, spectrograms were normalized by scaling pixel values
between O and 1. This normalization process ensured uniformity across all samples and
prevented variations in amplitude from affecting model performance. Finally,
spectrogram images were resized to 128x128 pixels to maintain computational efficiency
without losing essential frequency information.

Phase 2: Model Development

The core of the system is a hybrid CNN-LSTM model built using TensorFlow and
Keras. It is designed to extract both frequency-based spatial features and time-based
temporal dependencies from the spectrograms.

CNN-LSTM Model Architecture. A hybrid CNN-LSTM architecture was
implemented using TensorFlow and Keras to effectively capture both spatial and
temporal features for Al-generated speech detection. The CNN component comprised
three convolutional layers with 32, 64, and 128 filters, respectively, each using a 3x3
kernel. These layers were followed by Batch Normalization, ReLU activation, and Max
Pooling, enabling the extraction of frequency-based features from Mel spectrograms—
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such as pitch fluctuations and artifacts indicative of synthetic speech. The resulting
feature maps were flattened and fed into two LSTM layers with 128 units each, which
processed the features sequentially to capture temporal dependencies and speech
dynamics. Finally, fully connected dense layers refined the learned representations, and
a Sigmoid-activated output layer performed binary classification to distinguish between
real and Al-generated speech.

Model Configuration. The model was configured to process and classify speech
data through a combination of convolutional and recurrent layers. The CNN component
consisted of three convolutional layers, each followed by batch normalization, ReLU
activation, and max pooling. These layers extracted essential spectral features from the
input Mel spectrograms. The extracted features were then passed through two LSTM
layers, each containing 128 units, which captured sequential dependencies within
speech signals. The final classification layer employed a Sigmoid activation function,

defined as:
1

1+e ™

o(y) =

Equation 1. Sigmoid Formula

This function transformed the model’s output into a probability score between O
and 1, where values closer to O indicated real human speech and values closer to 1
suggested Al-generated speech.

Training and Validation. During the training procedure, the CNN-LSTM model
was optimized using the Binary Cross-Entropy (BCE) loss function and the Adam
optimizer with a learning rate of 0.001. For balanced learning and dependable
assessment, the dataset—which was kept in Kaggle Cloud Storage—was divided into
training (80%), validation (10%), and testing (10%) sets. For 20 epochs and a batch size
of 32, the model was trained in Visual Studio Code, enabling weight updates while
preserving stability throughout optimization.

To handle potential class imbalance, class weights were assigned, ensuring that
the model learned equally from both real and Al-generated speech samples. Early
stopping was implemented to monitor validation loss, terminating training if no
improvement was observed for five consecutive epochs to prevent overfitting. A learning
rate reduction on a plateau was applied, adjusting the learning rate dynamically when
performance stagnated, allowing for finer weight updates in later epochs.

The model’s performance was optimized using the Binary Cross-Entropy loss
function, defined as:

=

4

N

[yi log log (§:) + (1 — y)log (1 —9;)]
=1

Equation 2. BCE Formula

Where yi is the projected probability and yi is the genuine label (O for real, 1 for
Al-generated). The loss function enables the model to assign probabilities closer to O or
1 by imposing stronger penalties on inaccurate predictions. Throughout the training,
accuracy and loss values were continuously tracked across epochs to evaluate the
model’s learning progression. This ensured that adjustments could be made to refine
the model’s generalization ability, improving its performance in detecting Al-generated
speech.
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Model Evaluation. Following training, the model’s ability to distinguish between
genuine and Al-generated speech was evaluated using key performance metrics:
accuracy (ratio of correct predictions), precision (true positives over all predicted
positives), recall (true positives over all actual positives), Fl-score (harmonic mean of
precision and recall), and the confusion matrix (distribution of true positives, true
negatives, false positives, and false negatives). These metrics offered a comprehensive
view of the model’s performance, particularly its effectiveness in handling class
imbalance. The evaluation results confirmed that the model generalized well to unseen
data, showing no signs of overfitting.

Accuracy. It measures how close predictions are to the actual values. It is
computed as:

TP +TN

A
CUraCY TP ¥ TN + FP + FN

Equation 3. Accuracy Formula

To determine how well the model distinguished between actual and artificial
intelligence-generated speech, a number of critical performance measures were included
in the assessment of the deepfake audio detection system. Accuracy, which calculates
the ratio of correctly identified instances to all occurrences, is one of the basic metrics.

On the other hand, FP (False Positives) refers to genuine speech that has been
incorrectly classified as Al-generated, FN (False Negatives) signifies Al-generated speech
that has been incorrectly classified as real, and TP (True Positives) reflects correctly
detected Al-generated speech. By calculating the proportion of accurate predictions
among all classes, accuracy offers a comprehensive assessment of model performance.
Accuracy was tracked during training and validation in the system implementation to
guarantee model consistency and avoid overfitting.

Precision. Precision calculates the proportion of correctly identified positive
samples among all predicted positives:

.. T
Precision
TP+FP

Equation 4. Precision Formula

In deepfake detection, precision is very crucial because it shows how well the
model can prevent false positives, guaranteeing that an audio file’s classification as Al-
generated is almost always valid. A high precision score reflects the model’s reliability
in minimizing incorrect detections of real speech as synthetic. In the system’s
implementation, precision was evaluated using performance analysis techniques that
measured the proportion of correctly identified Al-generated speech among all instances
predicted as Al-generated. This assessment provides valuable insight into the model’s
success in correctly distinguishing deepfake speech from real human voices.

Recall. It measures how well the model identifies actual positive samples:

TP
Recall ——
TP+FN

Equation 5. Recall Formula
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It measures the model’s ability to correctly identify Al-generated speech among
all actual deepfake samples. A high recall score ensures that the model successfully
detects most Al-generated speech, minimizing false negatives. This is crucial in security-
sensitive applications, where failing to detect deepfake audio could lead to
misinformation or fraud. In the system, recall was evaluated alongside precision to
balance the trade-off between detecting all fake speech samples while minimizing false
positives.

Together, accuracy, precision, and recall provide an entire assessment of the
CNN-LSTM model’s performance. By monitoring these metrics throughout training and
validation, the system ensures high classification reliability, optimizing detection
capabilities for real-world applications.

F1l-score. It provides a balance between precision and recall.

Precision x Recall

F1=2x

Precision + Recall

Equation 6. F'I-score Formula

By offering a harmonic mean of precision and recall, this metric ensures that
false positives and false negatives are taken into consideration when assessing the
model’s performance. A high F1l-score shows that the model strikes a good balance
between minimizing misclassifications and accurately identifying Al-generated speech.

In the system’s implementation, the Fl-score was used to assess the model’s
overall success in detecting deepfake audio. Since precision and recall can sometimes
be trade-offs, where increasing one may decrease the other, the F1-score ensures that
both metrics are optimized together. This is particularly important in security and
authentication applications, where failing to detect deepfake speech (false negatives) can
be just as problematic as incorrectly flagging real speech as synthetic (false positives).
By maintaining a high F1-score, the system achieves a valid and balanced classification
performance, making it a significant tool for deepfake detection.

Confusion Matrix
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Figure 2. Confusion Matrix

To gain deeper insight into classification performance, a confusion matrix was
generated, visually mapping the distribution of correct and incorrect classifications. As
shown in the confusion matrix, the model achieved 8,787 true positives (TP), 8,403 false
negatives (FN), 110 true negatives (TN), and 125 false positives (FP). This indicates a
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strong ability to differentiate between real and Al-generated speech with minimal
misclassifications.

Accuracy, precision, recall, F1 score, and confusion matrix were used for
evaluation, offering a thorough analysis of classification performance. The model’s
ability to reduce false positives and ensure the accurate recognition of Al-generated
speech was validated by the high precision score. Meanwhile, high recall indicated the
model’s success in capturing most Al-generated speech samples with minimal false
negatives. The F1-score validated a well-balanced performance, ensuring no significant
bias toward either class.

The final results confirmed that the CNN-LSTM model successfully generalized to
unseen data, maintaining high classification accuracy without significant overfitting.
This suggests that the model can reliably detect Al-generated speech while minimizing
errors, making it a solid solution for real-world applications.

Phase 3: System Implementation and Deployment

This phase involves the integratation of the trained model into a functional web-
based application that allows wusers to analyze speech recordings and receive
classification results in real time.

—
B3 ABOUT CONTACT US

DETECT FAKE AND REAL AUDIO INSTANTLY
PREDICTION RESULT

AUDIO 1 AUDIO 1

Filename Filename

RESULT RESULT

Upload another file

Figure 3. Web-Based Ul with Classification

The system interface was designed with a futuristic, dark-themed aesthetic for
an engaging user experience. A robot assistant provides guidance, while an intuitive
layout ensures ease of navigation. Users can upload two audio files for comparison, with
file names displayed upon selection. The system processes each file and generates Mel
spectrograms, visually representing frequency patterns to aid in deepfake detection.
Below each spectrogram, the prediction result indicates whether the audio is real or
fake. An “Upload another file” button allows users to test multiple files efficiently.
Navigation options like “About” and “Contact Us” enhance accessibility. The system
ensures a seamless, Al-powered deepfake detection experience with correct
classification.

System Design and Workflow. The deepfake detection system operates through
a structured workflow encompassing audio preprocessing, feature extraction, and model
inference. It accepted audio input in formats such as MP3, WAV, and FLAC, which were
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converted into Mel spectrograms to serve as inputs for the trained CNN-LSTM model.
The model analyzed these spectrograms to identify distinguishing patterns and outputs
a probability score indicating whether the speech is real or Al-generated. Results,
including both the spectrograms and classification outcomes, were presented through
a user interface designed for clear interpretation. The system supports both single-file
analysis and side-by-side comparisons, enabling flexible and comprehensive evaluation
of speech authenticity.

Application Development. The application was developed using Python, with
TensorFlow and Librosa handling model integration and audio preprocessing. The
backend, built with Flask, manages file handling, model inference, and integrates a
TensorFlow Lite version of the trained CNN-LSTM model to ensure faster and more
efficient performance.

On the frontend, a responsive user interface was developed using React.js, along
with HTML, CSS, and JavaScript to facilitate seamless interaction. Users can upload
audio files in formats such as MP3, WAV, or FLAC, which were processed into Mel
spectrograms using Librosa. These spectrograms were then passed to the trained model
for classification. The model outputs a probability indicating whether the audio is real
or Al-generated. This result, along with the corresponding spectrogram, was presented
to the user through the interface with minimal delay, enabling efficient single-file
analysis or side-by-side comparisons.

Deployment and Performance Testing. The deepfake detection system was
deployed in a cloud-based environment to ensure scalability and efficient processing. It
was tested across various browsers and devices to validate cross-platform compatibility.
Performance evaluation involved measuring model latency, accuracy, and
computational efficiency using multiple datasets. Stress testing was conducted to
assess the system’s ability to handle concurrent user requests, confirming that it
maintained consistent classification speed and responsiveness under load. These
results demonstrated the system’s reliability and suitability for real-time applications.

User Audio
Input
(MP3/MWAV/FLAC)

Audio Preprocessing CONN Layers
. (Librosa) ConvaD (3 =3, 32| 664 filters)
5 esampling BatchNorm + Rel.U + MaxPooling
egmentation e
Noise Reduction l

l LSTM Layers
Mel Spectrogram 1LSTM (126 < 2)
Conversion l
— J' —— | Dense Layers + Dropout |
Mel Spectrogram
I Conversion ] l

| Sigmoid Output Layer I

Predicion:
Real / Fake

React Frontend Ul ]
(Display Spectrogram J

+ Result)

React Frontend UI
(Display Spectrogram
+ Resul)

Figure 4. Software Architecture
Figure 4 presents the software architecture of the proposed deepfake speech

detection system. The architecture outlines the complete workflow from audio input to
final prediction output, integrating data preprocessing, model inference, and user
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interface layers within a modular structure. At the entry point, users upload audio files
in standard formats (MP3, WAV, FLAC). These files are preprocessed using Librosa,
which handles key operations such as resampling, segmentation, and noise reduction.
This preprocessing ensures input consistency and validity against diverse recording
conditions.

The cleaned audio is then transformed into a Mel spectrogram, a time-frequency
representation used as input for the CNN component of the model. The CNN layers,
implemented wusing TensorFlow/Keras, extract spatial features such as pitch
fluctuations, harmonic structures, and formants. These features are then passed to
LSTM layers, which capture temporal dependencies by analyzing the sequence of
patterns over time—a critical aspect in detecting deepfake speech where unnatural
timing is often a giveaway.

The processed features flow through fully connected dense layers with dropout
for regularization, and a final sigmoid output layer generates a binary classification: real
or Al-generated. The trained model is exported using TensorFlow Lite to ensure
lightweight and fast inference performance, especially suitable for real-time or web-
based deployment. This inference pipeline is embedded in a Flask backend, which acts
as the system’s core engine—receiving user input, processing it, and returning
predictions. The frontend, built with React.js, provides an intuitive user interface that
displays the prediction result alongside the corresponding spectrogram, allowing users
to interact with and interpret the outcome.

The layered architecture promotes modularity and scalability. By separating the
audio processing, model inference, and user interface layers, the system ensures
maintainability and allows for independent upgrades. This design also supports
potential real-time applications by enabling easy integration with cloud services or edge
devices. Overall, the software architecture reflects a strong and user-centered approach
to deepfake detection, combining deep learning, audio analysis, and interactive design
into a cohesive system.

Ethical Considerations

This study did not involve direct interaction with human participants but utilized
voice data that could be linked to individuals. All audio data were ethically sourced,
ensuring that no personally identifiable information was collected. Anonymity and
confidentiality were maintained throughout the research process. Although formal
informed consent was not required due to the nature of the dataset, ethical guidelines
were observed, and the study underwent internal evaluation to assess risks and ensure
the protection of participants’ rights. No ethical violations were identified.

The researchers declare no conflict of interest. Transparency regarding the
limitations of the AI model, including risks of false positives and negatives, was
maintained to support responsible use. The study emphasizes the importance of
fairness, accountability, and respect for individual privacy in deploying Al-based voice
detection systems.

Results and Discussion
For Al-generated voice identification, the CNN-LSTM model was created to take
advantage of both temporal and spatial feature extraction. Convolutional layers in the
model architecture were in charge of collecting spectral features from Mel spectrograms,
while LSTM layers examined the derived features’ sequential dependencies. The learnt
patterns were refined by fully connected dense layers, and a final output layer
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ascertained if the audio input was artificial intelligence (Al)-generated or real. The model
had batch normalization to increase stability during training and dropout layers to avoid
overfitting. By fusing sequential learning capabilities with image-based feature
extraction, the CNN and LSTM hybrid technique ensured dependable categorization.

DETECT FAKE AND REAL AUDIO INSTANTLY
PREDICTION RESULT

Filename:

Duterte Real.mp3

E]DD5FZZ1S

RESULT real

Upload Another File

Figure 5. Sample Real Results

Figure 5 illustrates a sample detection result generated by the deployed system.
In this example, a 22-minute audio file titled “Duterte Real. mp3” was uploaded and
analyzed. The system processed the input by converting it into a Mel spectrogram, which
was then passed through the CNN-LSTM model for inference. As shown in the interface,
the model classified the voice as “real” with high confidence.

The displayed Mel spectrogram provides a time-frequency representation of the
audio, highlighting vocal characteristics such as pitch and intensity variations. In this
case, the spectrogram shows continuous and naturally modulated frequency bands,
which are common features of human speech. The model was able to detect these
patterns and distinguish them from typical synthetic artifacts such as unnatural
pauses, uniform pitch contours, or high-frequency distortions often found in AI-
generated audio.

DETECT FAKE AND REAL AUDIO INSTANTLY
PREDICTION RESULT

Upload Another File

Figure 6. Sample Fake Results
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Figure 6 illustrates a sample detection result generated by the deployed deepfake
detection system. In this example, the uploaded audio file titled “duterte fake.mp3” was
analyzed to determine its authenticity. The system processed the input by first
converting the audio into a Mel spectrogram, a visual representation that captures the
frequency and temporal characteristics of the sound. This spectrogram was then fed
into the CNN-LSTM model for inference, where convolutional layers extracted spatial
features and LSTM layers analyzed temporal dependencies. The model ultimately
classified the audio as “fake”, indicating a high likelihood of manipulation.

The accompanying Mel spectrogram provides further insight into the system’s
decision. Unlike natural speech, which exhibits smooth, variable frequency bands and
dynamic pitch modulation, the spectrogram of this file likely contained irregularities
such as abrupt transitions, uniform harmonic structures, or high-frequency noise,
common artifacts in Al-generated audio. The model’s ability to flag these anomalies
demonstrates its effectiveness in distinguishing between authentic human speech and
synthetic reproductions. For instance, genuine speech typically shows natural formant
dispersion and breath noise, while deepfake audio may display overly consistent pitch
contours or spectral discontinuities at syllable boundaries.

Table 1. Model Architecture

Layer (Type) Output Shape Param #
time_distributed_1 (None,10,32768) 93,248
(TimeDistributed)

Istm_1 (LSTM) (None, 256) 33,817,600
dense_4 (Dense) (None, 256) 65,792
dropout_1 (None, 256) 0
(Dropout)

dense_5 (Dense) (None, 1) 257

Table 1 shows the structure of the CNN-LSTM model used for voice classification.
The model starts with a TimeDistributed layer that applies a dense layer across time
steps, producing a shape of (10, 32) for each sequence. This is followed by an LSTM
layer with 256 units to capture temporal dependencies. Two dense layers are added: the
first with 256 units and the second with 1 output node for binary classification. A
dropout layer is included between dense layers to reduce overfitting. The model contains
a total of over 33 million trainable parameters, with most concentrated in the LSTM
layer.

Training and validation accuracy
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Figure 7. Training and Validation Accuracy
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Figure 7 shows the CNN-LSTM model’s training and validation accuracy. The
model showed a consistent increase in accuracy during training, with training accuracy
hitting about 99%. Strong generalization to unknown data was indicated by the
validation accuracy, which stabilized at about 98% after following a similar pattern. The
small difference in accuracy between training and validation indicates that the model
picks up pertinent patterns without experiencing severe overfitting. The model’s
capacity to reliably differentiate between actual and artificial intelligence-generated
voices is demonstrated by its constant performance over epochs.

Training and validation loss

Figure 8. Training Validation Loss

The training and validation loss curves, shown in Figure 8, illustrate the model’s
ability to minimize classification errors during learning. The training loss consistently
decreased over the epochs, indicating that the model successfully optimized its
parameters. Meanwhile, the validation loss remained relatively stable with minor
fluctuations, suggesting that the model generalizes well without significant overfitting.
The slight difference between training and validation loss confirms that the model
maintains a strong balance between learning complex patterns and avoiding excessive
memorization of the training data.

Evaluation
a4 93.37
a3 =
_ g7 91.57
2'91 9047
g 90 88.72
2 89
" 88
3"' I
86
Inception Mobile VGG16 CNN
Met
Muodels

Figure 9. Model Accuracies
Figure 9 features the research study “Deepfake Audio Detection and Justification

with Explainable Artificial Intelligence (XAI)” which evaluated several deep learning
models for detecting synthetic audio, including Inception, MobileNet, VGG16, and CNN-
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based architectures. These models achieved accuracies ranging from 86% to 93.37%,
with the highest performance coming from a CNN or Inception variant. While these
results demonstrate reasonable effectiveness in identifying deepfake audio, they also
reveal limitations in generalization and temporal modeling. Traditional CNNs excel at
extracting spectral features from Mel-spectrograms but may struggle to capture
sequential inconsistencies in speech patterns, such as unnatural pauses or pitch
variations. Similarly, models like VGG16 and MobileNet, originally designed for image
recognition, may not fully optimize their feature extraction for audio-specific artifacts.
These architectural constraints likely contribute to the performance ceiling observed in
the study.

In contrast, the hybrid CNN-LSTM model achieved a significantly higher accuracy
of 98.65%, outperforming the best baseline model by approximately 5.3%. This
improvement stems from the synergistic combination of spatial feature extraction (via
CNN layers) and temporal sequence analysis (via LSTM layers). While CNNs effectively
identified local anomalies in spectrograms—such as unnatural harmonics or glitches—
LSTMs analyzed long-range dependencies in speech, including rhythm irregularities and
synthetic voice “smoothing” artifacts. This dual approach enabled the model to detect
subtle manipulations that stand-alone CNNs or recurrent networks might miss.
Furthermore, the hybrid architecture aligned well with explainability goals, as the CNN’s
visual feature maps and LSTM’s attention to temporal inconsistencies can jointly justify
predictions. For instance, the model might highlight both spectral distortions and
unnatural pitch transitions to support its classification. This advancement not only
enhances detection accuracy but also provides more interpretable results, which are
critical for applications in journalism, forensics, and content moderation.

Table 2. Training, Validation, and Testing Evaluation

Dataset Accuracy Loss
Training 99.0% 0.015
Validation 98.12% 0.098
Testing 98.0% 0.102

These findings confirm that the CNN-LSTM model successfully classified Al-
generated and real voices with high accuracy while maintaining a low error rate, making
it a valid approach for voice authenticity detection.

Table 3. Precision and Recall

Class Precision Recall F1-Score Support
Real 98.60% 98.76% 98.68% 8897
Fake 98.71% 98.53% 98.62% 8528

Precision and recall are critical parameters for evaluating the CNN-LSTM model’s
classification performance. Precision ensures that false positives are kept to a minimum
by calculating the proportion of correctly predicted positive cases among all expected
positives. In contrast, recall measures the model’s ability to detect every genuine positive
event while minimizing false negatives.
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Table 3 presents the precision and recall values for both classes in the dataset.
The precision for class 1 is 98.60%, while the recall is 98.76%, indicating that the model
successfully classified real voices with minimal false positives. Similarly, for class O, the
precision is 98.71%, and the recall is 98.53%, demonstrating a strong balance between
correct predictions and the ability to detect Al-generated voices. The high Fl-scores of
98.68% for class 1 and 98.62% for class O confirmed that the model maintained a
consistent classification performance across both categories. These findings highlight
the model’s ability to minimize misclassifications while maintaining a well-balanced
performance, making it a valid tool for detecting Al-generated voices.

The table also presents the classification performance of the proposed CNN-LSTM
model on the test dataset. The model achieved exceptionally high scores across all key
evaluation metrics for both real and Al-generated (fake) audio samples. The model
achieved an F1-score of 98.68%, a precision of 98.60%, and a recall of 98.76% for the
real class, meaning that almost all real speech samples were properly classified with
little misclassification. Likewise, the fake class had a strong capacity to distinguish Al-
generated sounds while limiting false positives, achieving a precision of 98.71%, a recall
of 98.53%, and an F1l-score of 98.62%.

These results reflect a well-balanced model with consistent performance across
both classes, which is crucial in practical deepfake detection applications. The slightly
higher recall for the real class suggests a slightly lower false negative rate for genuine
speech, while the nearly symmetric precision and recall values in both classes indicate
minimal bias and balanced generalization across the dataset.

The high Fl-scores further validate the model, confirming that it essentially
captures critical audio features that distinguish human voices from synthetic ones. This
performance can be attributed to the combined strength of the CNN and LSTM layers,
where the CNN extracts detailed spatial features from Mel spectrograms, and the LSTM
captured temporal dependencies essential for modeling speech dynamics.

Better generalization was achieved during training by utilizing data augmentation
strategies such as pitch shifting, noise addition, and time-stretching. These
augmentations simulated realistic variations in audio input, enabling the model to
remain productive across a wider range of real-world speech characteristics and
recording conditions.

The high precision, recall, and Fl-scores confirmed that the CNN-LSTM
architecture is highly practical for classifying real and Al-generated voices, supporting
its potential use in applications requiring good deepfake audio detection. Future work
may explore integrating this model with multimodal approaches or applying adversarial
defenses to further enhance performance and resilience against more sophisticated
synthetic audio.

Additionally, Figure 9 demonstrates that the hybrid CNN-LSTM model
outperforms not only conventional CNN-based approaches but also other state-of-the-
art architectures evaluated in prior research. While the standalone CNN model achieved
a respectable 95.8% accuracy, its limitations in handling temporal variations—such as
rapid speech or pitch-altered synthetic audio—highlighted the necessity of incorporating
LSTM-based sequence modeling. The hybrid architecture, with its 98.65% accuracy,
effectively bridges this gap by combining the CNN’s strength in spectral feature
extraction with the LSTM’s ability to detect inconsistencies in speech dynamics.

Furthermore, when compared to the models examined in “Deepfake Audio
Detection and Justification with XAI”, which maxed out at 93.37% accuracy, this
approach delivers a 5.3% absolute improvement, setting a new benchmark for deepfake
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audio detection. This superior performance underscores the critical advantage of joint
spatial-temporal analysis in identifying sophisticated audio manipulations. Given these
results, the CNN-LSTM hybrid model stands as the most effective solution currently
available for reliable, high-accuracy deepfake audio detection, with significant potential
for real-world deployment in security, media verification, and forensic applications.

Conclusion and Future Works

Using spectrogram-based features, this study illustrated the benefit of a deep
learning model in differentiating between artificial intelligence-generated and genuine
voices. The accuracy achieved indicates the model’s potential in addressing growing
concerns over deepfake audio, particularly in applications related to security, identity
verification, and misinformation prevention. The results contribute to the expanding
field of audio forensics by providing a good method for detecting synthetic speech.

However, the study is limited by the size and diversity of the dataset, which may
affect the model’s generalizability to more complex or evolving deepfake technologies.
The system was also tested in an offline setting, and real-time performance was not
evaluated. Future research may explore improvements through larger datasets, real-
time detection integration, and the use of hybrid models or adversarial training to
enhance resilience against advanced synthetic audio generation techniques. These
directions can support further development of ethical Al-driven solutions in voice
detection.
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