Barangay officials are responsible for the barangay-related decision-making process. The secretary handles the data to be used by the officials. The secretary is the person who assists the civil registrar in recording in his jurisdiction the births, deaths, diseases, and marriages that occur. For this purpose, in terms of births, deaths, and illnesses, the Philippines' barangay secretary is an individual assigned to compile and manage the barangay records. It is laborious to consolidate, manage, evaluate, and retrieve information, especially in producing efficient information and decision processing, using the current encoding data method to excel. For this purpose, the researchers' design and develops a Networked Decision Support System Application to help barangay monitor the Natality, Mortality, and Morbidity rates in the Barangay for efficient information and decision processing and to define the system's acceptability to the end-user in terms of functionality, usability, and performance. The data will be automatically analyzed via tabular, graphical, and geographical formats using the device. Natality, mortality, and morbidity rates are easily consolidated by the system and computed. The information is now organized, and the records of the different rates are stored in the system's database. The developed DSS for the Barangay Health Unit correctly fulfills functional requirements for features such as the management of the Barangay residents' profile, the mapping of geographical information, the statistical report using tabular and graphical data, and report presentation. The system was evaluated jointly with the residents by the barangay officials/staff like the secretary. The overall result of the system evaluation using ISO 25010 Software Quality Standard the criteria Functionality, Usability, and Performance statistically implies that the system was completely functional, efficient and usable, and fulfilled the users' requirements.

Keywords: Decision Support System, Barangay, Health, natality, mortality, mobility