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Rice is a staple crop crucial to food security, 
particularly in Southeast Asia, where pest 
infestations cause substantial yield losses. In the 
Philippines, rice fields are highly susceptible to leaf 
and stem pests, which compromise productivity and 
farmers’ livelihood. Traditional pest monitoring 
methods are labor-intensive and error-prone. 
Although models like Pest-Net have reached 88.6% 
accuracy, limitations remain in real-time detection 
accuracy. This study presented a hybrid deep 
learning model integrating Convolutional Neural 
Networks (CNN) for feature extraction and YOLOv5 for 
real-time object detection and classification. A 
dataset containing eight rice pest species underwent 

augmentation and was evaluated using standard 
detection metrics. The proposed model achieved a 
mAP50 of 96.8%, significantly outperforming Pest-
Net. Integrated into a GUI, the system enables real-
time detection with class labels and confidence 
scores. This solution enhances precision agriculture 
in pest monitoring. Future work includes expanding 
pest class coverage and optimizing the system for 
deployment in diverse environmental settings. 
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Introduction 
 Rice production is a critical component of global food security, yet it remains 
highly vulnerable to pest infestations that significantly reduce yield and quality. 

Globally, over 1,400 pest species threaten rice crops, but the intensity and impact vary 
across regions. In the Philippines, where agriculture constitutes around 10% of the GDP 
and provides employment for millions, rice is the most essential staple crop. Major rice-
producing provinces like Isabela, Nueva Ecija, and Iloilo experience recurring pest 
outbreaks that have been linked to 20% to 30% yield loss annually. These infestations 
directly impact both the livelihoods of farmers and the country’s food sufficiency goals. 
Among the most common and destructive pests found in Philippine rice fields are the 
brown plant hopper, rice leaf caterpillar, rice leaf hopper, rice stem fly, rice water weevil, 
rice gall midge, thrips, and rice bug. These pests target both the leaves and stems of 
rice plants, compromising the plants’ ability to photosynthesize, mature, and reproduce 
effectively. Their spread is influenced by climate variability, pesticide resistance, and 
unsystematic pest control methods. 

Traditional pest management practices rely heavily on manual monitoring and 
chemical interventions, both of which present limitations in terms of efficiency, cost, 
and environmental impact. Manual scouting is time-consuming, inconsistent, and often 
impractical for large-scale applications. Furthermore, repeated pesticide use increases 
resistance in pest populations and harms ecological balance (Yadav et al., 2023). 

Historically, pest identification has been conducted using image processing 
techniques and classical machine learning algorithms that analyze visual features of 
pests to classify them accordingly (Kumar & Laxmi, 2022). While these methods showed 
early promise, they require extensive labeled data and struggle with variability in pest 
appearance due to metamorphosis and environmental conditions. Additionally, 
traditional models often underperform in complex field environments where lighting, 
occlusion, and background clutter vary significantly. 

The rapid development of deep learning and computer vision has revolutionized 
object detection in agriculture. Convolutional Neural Networks (CNNs) have become a 
powerful tool for feature extraction and classification (Oqaibi et al., 2023). CNNs have 
proven effective in differentiating between subtle differences in pest anatomy, which 
traditional algorithms fail to capture. Simultaneously, the You Only Look Once (YOLO) 
family of real-time object detectors has demonstrated high accuracy and speed across 
multiple domains, including agriculture (Hebbar & Pullela, 2023). Recent models such 

as PestLite (Dong et al., 2024) and RICE-YOLO (Lan et al., 2024) have shown excellent 
performance in real-world agricultural conditions. PestLite, for example, improved 
YOLOv5 by incorporating Multi-Level Spatial Pyramid Pooling (MTSPPF) and Efficient 
Channel Attention (ECA), achieving higher detection accuracy while reducing 
computational cost. RICE-YOLO, on the other hand, integrated attention mechanisms 
to detect rice spikes in field conditions, demonstrating a mAP@0.5 of 94.8%. These 
technologies are increasingly adopted in precision agriculture due to their efficiency and 
robustness, particularly in countries like China, India, and Japan. 

Comparative studies have further emphasized the advantages of YOLO-based 
models over traditional methods such as Faster R-CNN and SSD in both speed and 
accuracy (Zhang et al., 2023). YOLO’s ability to perform object detection in real time 
makes it especially valuable in dynamic field environments, where timely pest detection 
can prevent the spread of infestations and guide prompt intervention. 
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Object detection also plays an essential role in broader applications, including 
healthcare, surveillance, and autonomous systems (Trigka & Dritsas, 2025). In 
agriculture, object detection facilitates early disease detection, pest identification, and 

yield prediction, enabling farmers to act promptly. 
Furthermore, transformer-based architectures are emerging as state-of-the-art 

models in visual tasks due to their ability to model spatial dependencies (Guo et al., 
2023). These have been used for crop disease detection and offer potential for future 
pest detection improvements. Their incorporation into future hybrid models could 
enhance the detection of overlapping or occluded pests in high-density crop 
environments. 

By integrating CNN and YOLOv5, this study aimed to create a hybrid pest 
detection system that provides high-accuracy real-time results. It also highlighted the 
importance of real-time field deployment and accessible GUI interfaces for local farmers. 
The hybrid model was evaluated using standard object detection metrics and tested in 
simulated real-world settings, which provided high-accuracy real-time results. It also 
highlighted the importance of real-time field deployment and accessible GUI interfaces 
for local farmers. The hybrid model was evaluated using standard object detection 
metrics and tested in simulated real-world settings.  

 
Methods 

This section elaborates on the methodological approach for developing and 
evaluating the proposed hybrid deep learning model aimed at detecting and classifying 
rice pests in real-time. It covers the research design, dataset preparation, augmentation 
techniques, model architecture (CNN + YOLOv5), training configuration, system 
integration into a GUI, and ethical considerations. 

 
Research Design Framework 

 

Figure 1. Project Design 
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Convolutional Neural Networks (CNN) and You Only Look Once version 5 
(YOLOv5) can be used systematically to detect and classify leaf and stem pests in rice 
crops in real time. By combining the conceptual and operational parts of the study into 

a single, organized narrative, this portion aligns the system's fundamental concept with 
its technical implementation. 

The framework begins with the recognition of a critical agricultural problem: the 
widespread damage caused by rice pests, particularly those that attack the leaves and 
stems of rice plants. These infestations often go unnoticed in their early stages, leading 
to substantial crop losses. Traditional pest monitoring practices—based on manual field 
scouting—are labor-intensive, time-consuming, and prone to human error. This 
limitation necessitates a shift toward precision agriculture powered by artificial 
intelligence. 

The conceptual model proposes the integration of two deep learning paradigms: 
CNNs, which are proficient in extracting spatial and morphological features from 
images; and YOLOv5, an advanced object detection algorithm known for its high speed 
and accuracy in real-time applications. This hybridization is central to the system’s 
effectiveness, enabling both accurate identification and immediate localization of 
multiple pest classes in varied field conditions. 

Conceptually, the system operates as an automated pipeline comprising 
interconnected components that reflect the stages of a typical machine learning lifecycle. 
The framework outlines the flow of processes from data collection to model deployment 
and is operationalized through five distinct yet interrelated phases. These are illustrated 
in Figure 2, which serves as the unified research design diagram. 

 
Phase 1: Data Preprocessing  

The foundation of the framework begins with data preprocessing, a critical phase 
where raw input images are systematically prepared for machine learning. This includes 
the cleaning of image data to remove noise and irrelevant content, followed by the 
application of augmentation techniques such as flipping, rotation, brightness 
adjustment, and cropping to simulate a range of environmental scenarios. These 
enhancements ensure diversity and robustness in the dataset, allowing the model to 
generalize well to real-world variability. Images are resized to 416×416 pixels, a 
dimension that balances computational efficiency and feature granularity. Manual 
annotation is performed using LabelImg and Roboflow, resulting in bounding box labels 

saved in YOLO format.    
 

Phase 2: Model Development and Training 
This phase represents the core computational engine of the system. CNN is 

utilized to extract discriminative features from the input images, learning intricate 
patterns such as pest shape, color, texture, and contour. These features are then passed 
to the YOLOv5 detection head, which uses anchor boxes and non-maximum 
suppression techniques to localize pests within an image and assign class probabilities. 
The model is trained using a supervised learning approach on a GPU-accelerated 
platform to optimize both accuracy and training speed. During training, evaluation 
metrics such as loss values, mAP (mean Average Precision), and F1-score are monitored 
to assess convergence and prevent overfitting. 
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Phase 3: System Development 
Once the model is trained, it is integrated into a Graphical User Interface (GUI) 

to bridge the gap between technical implementation and end-user interaction. This 

system development stage emphasizes usability, making the tool accessible to 
stakeholders such as farmers, researchers, and agricultural extension workers. The GUI 
supports both image upload and real-time webcam detection modes. It displays visual 
outputs such as bounding boxes, class labels, and detection confidence scores. 
Additionally, it includes an analytics dashboard that visualizes precision, recall, and 
detection counts in a user-friendly layout, reinforcing the system’s applicability in field 
settings. 
 
Phase 4: Model Integration 
 Model integration ensures that the trained detection model operates seamlessly 
within the GUI environment. This includes embedding the YOLOv5 engine into the GUI 
backend and optimizing the system for real-time responsiveness. Integration testing is 
conducted to evaluate system performance under various hardware constraints and to 
assess inference speed, stability, and memory utilization. This phase validates the 
model’s end-to-end pipeline, confirming that it can transition from laboratory 
development to real-world application without degradation in performance. 
 
Phase 5: Evaluation and Development 
 The final phase of the conceptual framework is concerned with evaluating and 
deploying the pest detection system. The model is assessed using industry-standard 
metrics such as precision, recall, F1-score, and mAP@0.5 Intersection over Union (IoU). 
Additionally, the real-time detection speed—measured in frames per second (FPS)—is 
tested under various conditions to determine field readiness. After successful validation, 
the system is considered ready for deployment in agricultural environments where it 
can assist in early pest detection and timely intervention, ultimately contributing to 
improved yield and reduced reliance on chemical pesticides. 
 
Study Locale and Duration 

The research project was conducted at New Era University, Quezon City, 
Philippines, particularly within the facilities of the College of Informatics and Computing 
Studies. Development, training, and evaluation were executed using Google Colab Pro, 

supported by an NVIDIA RTX 3050 GPU. The study was carried out over a span of four 
months, from August 2024 to April 2025, encompassing all stages from dataset 
preparation to final system evaluation. 
 
Pest Selection Criteria and Justification 

The study focused on eight pest species known for their economic impact on rice 
cultivation in the Philippines. These are: 

• Brown Plant Hopper (Nilaparvata lugens) 

• Rice Leaf Caterpillar (Cnaphalocrocis medinalis) 

• Rice Leaf Hopper (Nephotettix spp.) 

• Rice Stem Fly (Atherigona oryzae) 

• Rice Water Weevil (Lissorhoptrus oryzophilus) 

• Rice Gall Midge (Orseolia oryzae) 

• Thrips (Stenchaetothrips biformis) 
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• Rice Bug (Leptocorisa acuta) 
These pests were selected based on their documented frequency, geographical 

distribution, and severity of crop damage, as reported in agricultural extension bulletins 

and entomological studies (Sharma et al., 2024; Yadav et al., 2023). They primarily 
attack the leaves and stems of rice plants, leading to photosynthetic dysfunction, 
stunting, and severe yield loss. The selection was also informed by the accessibility of 
labeled images for these pests in existing datasets, thus ensuring data sufficiency and 
training feasibility. 
 
Data Collection, Preprocessing, and Annotation 

The initial dataset was derived from open-access platforms, including Kaggle and 
the IP102 pest dataset, which contains over 75,000 pest images. A filtered subset 
corresponding to the eight target pest classes was extracted and manually curated. 

Each image was annotated using YOLO format with tools such as LabelImg and 
Roboflow, which allowed precise definition of bounding boxes and pest categories. 

Annotations included normalized class IDs, center coordinates (x_center, y_center), and 
dimensions (width, height). Annotators manually verified each image for clarity, 
bounding box placement, and class accuracy. 

All images were resized to 416×416 pixels, as required by YOLOv5 input 
specifications, and normalized in RGB color space to stabilize model training. Images 
that failed quality checks (e.g., excessive noise, blur, or ambiguity) were excluded from 
the training set. 
 
Data Augmentation Strategy 

To enhance model generalization under variable field conditions, extensive data 
augmentation was applied using the Albumentations library. Augmentations included 
the following: 

• Geometric transformations: horizontal and vertical flips, ±30° rotations, and 
random 200×200 pixel crops 

• Photometric modifications: brightness and contrast changes, hue and saturation 
adjustments 

• Noise simulation: Gaussian blur and Gaussian noise to mimic environmental 
distortion 
These augmentations simulated realistic variability in pest orientation, lighting 

conditions, and background complexity, thereby improving robustness in real-world 
deployment. 
 
Convolutional Neural Network (CNN) for Feature Extraction 

The CNN-based feature extractor plays a crucial role in learning significant pest 
characteristics, including shape, texture, and distinctive patterns. It processes input 
images through a hierarchical structure of layers, refining raw pixel data into a 
meaningful feature representation for pest classification and detection. 

The model receives 416×416 RGB images, where pixel values are normalized to 
stabilize training. This normalization ensures that the input data is standardized, 
preventing issues related to gradient instability. The feature extraction process begins 
with multiple 3×3 convolutional filters, which detect low-level features such as edges 
and textures. As data flows deeper into the network, these filters progressively capture 
more complex patterns, refining pest-specific characteristics. 
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Each convolutional layer is followed by batch normalization, which normalizes 
activations across mini-batches. This reduces internal covariate shifts, accelerates 
convergence, and stabilizes training. To introduce non-linearity into the network, a 

Rectified Linear Unit (ReLU) activation function is applied after each convolutional 
operation, allowing the model to learn complex relationships between features. 

To reduce computational complexity while preserving essential image features, 
2×2 max-pooling layers are incorporated into the architecture. This pooling operation 
selectively retains the most prominent features, ensuring a spatially efficient 
representation of pests. Extracted feature maps are then flattened into a structured 
numerical format before being passed to fully connected layers, which refine the learned 
feature space before the data is forwarded to the YOLOv5 detection network. 

This structured feature extraction pipeline significantly enhances the detection 
model’s ability to differentiate rice pest species, enabling precise object localization and 
classification. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2. CNN Feature Extract 
(Source: Moustafa, 2023) 

 
YOLOv5 for Object Detection and Classification 

After feature extraction, the images were processed by YOLOv5, which performs 
real-time object detection and classification. The model was designed to recognize pests 

by generating bounding boxes, confidence scores, and class labels. 
The first stage in YOLOv5 is the Backbone, which utilizes CSPDarknet53 to 

extract deep-level feature representations. This backbone consists of multiple 
convolutional layers with residual connections, ensuring efficient gradient propagation 
during training. The feature maps produced at this stage contain rich spatial and 
contextual information about the input image. 

To improve multi-scale feature representation, the Neck, implemented as a Path 
Aggregation Network (PANet), enhances the ability to detect pests of varying sizes. This 
component includes spatial pyramid pooling (SPP), which strengthens the model’s 
capability to recognize objects across different spatial contexts, ensuring that pests are 
correctly detected regardless of their size or orientation. 

The final stage in YOLOv5 is the Detection Head, which generates bounding 
boxes, class predictions, and confidence scores for each detected pest. The model 
employs anchor boxes, which help estimate object dimensions based on predefined 
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aspect ratios. The bounding boxes are refined using Intersection over Union (IoU) 
thresholds, ensuring precise localization. 

The final output from YOLOv5 consists of the pest's bounding box coordinates, 

class label, and confidence score, which are passed to the system's user interface for 
visualization and analysis. 
 

 
Figure 3. YOLOv5 Pipeline 

(Source: M. Alam, 2022) 

 
PestNet Architecture 

To validate the effectiveness of the proposed hybrid detection system, this study 
conducted a performance benchmark against the PestNet architecture—a CNN-based 
model commonly used in pest classification research. PestNet, trained on subsets of the 
IP102 dataset, utilizes a conventional CNN pipeline with sequential convolutional, 
activation, and pooling layers, culminating in a softmax-based classification output. Its 
design allows it to identify pest species at the image level, but it lacks object localization 
capabilities. While PestNet has been recognized for achieving respectable accuracy 
levels—recording a mean Average Precision (mAP) of 88.6% in this study—it was not 
originally designed for real-time field deployment. Its utility is therefore confined to 
offline classification tasks, limiting its relevance in dynamic agricultural settings that 
require immediate detection and spatial analysis. 

By contrast, the hybrid CNN-YOLOv5 model presented in this research addresses 
the key limitations of PestNet by enabling real-time detection, multiscale object 
recognition, and spatial localization through bounding boxes and confidence scores. The 
proposed model achieved a significantly higher mAP@0.5 of 96.8% and maintained an 
inference speed of 35 frames per second (FPS), making it viable for integration into real-

time systems such as mobile applications or field-based monitoring tools. The inclusion 
of PestNet in the comparative analysis provides a meaningful baseline and highlights 
the necessity of employing advanced object detection frameworks like YOLOv5 to meet 
the demands of modern precision agriculture. Through this benchmarking, the study 
established the hybrid model's superiority in both detection accuracy and practical 
deployability.  
 
Graphical User Interface (GUI) Integration 

A Graphical User Interface (GUI) was developed using Python, OpenCV, and 
PyTorch libraries. The interface supports two detection modes: 

• Live webcam detection, where pests can be detected in real time 

• Image upload mode, where users input images for classification 
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Each detection result displays the pest name, bounding box, and confidence 
score. The GUI also includes an analytics dashboard that presents evaluation metrics 
such as precision, recall, F1-score, and mAP50. These features aim to make the model 

more accessible and practical for use by agricultural practitioners, researchers, and 
educators. 

 

 
Figure 4. System Integration in GUI 

 
Research Instruments 

The instruments utilized in this study encompassed a curated rice pest image 
dataset, machine learning libraries, model training tools, and annotation software. The 
dataset was a refined subset of the IP102 dataset, primarily sourced from Kaggle, 
containing eight key rice pest classes: brown plant hopper, rice leaf caterpillar, rice leaf 
hopper, rice stem fly, rice water weevil, rice gall midge, thrips, and rice bug. These pest 
classes were chosen due to their significant impact on rice crop health and yield. 

Each image was manually annotated using LabelImg and Roboflow platforms to 
ensure accurate bounding box labeling in YOLO format. The annotation files contained 
normalized values for the class label, bounding box center coordinates (x_center, 
y_center), and the bounding box dimensions (width and height), which are essential for 
training the YOLOv5 detection model. 

 

 
Figure 5.  Manually Annotated Pest Image Using YOLO Format 
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Development and experimentation were conducted using Python 3, leveraging 
machine learning libraries such as PyTorch for model implementation, OpenCV for real-
time image capture and processing, and the Albumentations library for data 

augmentation. The model was trained on Google Colab using an NVIDIA RTX 3050 GPU 
to accelerate the learning process and improve training efficiency. The training and 
inference pipeline was managed using pre-built YOLOv5 scripts and modified 
configuration files tailored to the pest detection task. 
 
Data Collection Procedure 

The data collection procedure began with the acquisition of pest image data from 
Kaggle, filtered specifically to include eight common rice pest classes. Images were 
resized to 416×416 pixels to meet the input dimension requirements of the YOLOv5 
model. Each image underwent preprocessing, including format normalization and 
quality checks. Subsequently, images were manually annotated with bounding boxes 
identifying the pests. The annotations followed the YOLO text file format and were 
verified visually to ensure labeling accuracy. 

To improve the model's performance in varying real-world conditions, data 
augmentation was applied extensively using the Albumentations library. Each image in 
the dataset was transformed using several augmentation techniques to simulate diverse 
environmental scenarios. These augmentations enhanced the dataset's diversity and 
helped the model generalize well to challenges such as changes in lighting, occlusions, 
and pest orientation. 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Sample Data Augmentation Techniques Applied to a Rice Pest Image 
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Results and Discussion 
 This section addresses the study’s research objectives by presenting the 
performance results of the proposed CNN-YOLOv5 hybrid model for real-time rice pest 

detection. Quantitative and qualitative analyses are supported by visual figures and 
metric-based evaluations. The interpretation of results is aligned with related literature, 
discussing the broader implications of the findings in precision agriculture and 
computer vision. 
 
Quantitative Performance Analysis 

The CNN-YOLOv5 model was evaluated against the established Pest-Net 
architecture using standard performance metrics. As summarized in Table 1, the hybrid 
model achieved a precision of 93.9%, a recall of 94.4%, an F1-score of 94.1%, and a 
mean average precision at 50% Intersection over Union (mAP50) of 96.8%. These results 
significantly surpass Pest-Net’s performance, which recorded only 88.6% mAP. 
 

Table 1. Performance Comparison of Pest-Net and the Proposed CNN-YOLOv5 

Model  

 

Model Precision Recall F1-score mAP50 

   Pest-Net 
   CNN + YOLOv5 

89.2% 
93.9% 

79.9% 
94.9% 

78.9% 
94.1% 

88.6% 
96.8% 

 
The performance metrics for PestNet in this study were derived by 

reimplementing its architecture using our curated subset of the IP102 dataset under 
consistent training conditions shared with the CNN-YOLOv5 model. The version closely 
followed the architecture proposed by Gaikwad and Hangarge (2023), where PestNet was 
designed with a five-layer CNN and softmax output layer to classify six major rice pests. 
While their study achieved a notable accuracy of 88.6% using Kaggle-sourced data, it 
was limited to image-level classification and lacked object localization capabilities. In 
this reimplementation, PestNet recorded a recall of 79.9%, which suggests a tendency 
to miss actual pest occurrences, likely due to its lack of spatial awareness and inability 
to detect multiple instances in a single image. In contrast, the hybrid CNN-YOLOv5 
system recorded a significantly higher recall of 94.4%, which reflects its enhanced ability 
to localize and identify pests accurately in real time, especially when they appear in 

complex or cluttered agricultural scenes. 
Additionally, the hybrid model exhibited a higher precision of 93.9%, compared 

to PestNet’s 89.2%, which indicates fewer false positives and greater class prediction 
reliability. This improvement is attributable to YOLOv5’s anchor-based detection 
mechanism and multi-scale feature extraction capabilities, combined with the CNN’s 
strength in learning fine-grained pest characteristics. Notably, while Gaikwad and 
Hangarge (2023) emphasized the classification efficiency of PestNet on static datasets 
under controlled conditions, they did not extend its application to real-time systems or 
field settings. The current study built on their foundation by embedding the hybrid 
model into a real-time graphical user interface, achieving 35 FPS inference speed, and 
demonstrating deployment feasibility in live environments—something PestNet lacks. 
Thus, while PestNet performed adequately for image classification, the hybrid CNN-

YOLOv5 architecture was more suited for field-deployable pest monitoring, offering 
superior detection accuracy, spatial precision, and operational practicality. 
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Loss and Performance Metrics Analysis 
The loss metrics tracked during training include box loss, classification loss, and 

distribution focal loss (DFL). Training and validation metrics were monitored to evaluate 

model convergence and generalization. Figure 7 presents the training loss curves for the 
hybrid model, including box loss, classification loss, and distribution focal loss (DFL). 
All losses showed a consistent decline, indicating stable learning dynamics. Validation 
losses plateaued without signs of overfitting. 

 
 

 

 

 

 

 

 

 

Figure 7. Training Loss Curve 

To further investigate model reliability, Precision-Confidence Curves were 
generated for both PestNet and CNN-YOLOv5. As shown in Figure 8, the hybrid model 
maintains high precision even at lower confidence thresholds, whereas PestNet displays 
a rapid drop in precision as confidence decreases. This difference indicates that the 
CNN-YOLOv5 model is more consistent in distinguishing pests from background noise 
or irrelevant features, a crucial factor in reducing false detections. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Precision-Confidence Curve 
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In Figure 9, the recall-confidence curve reveals how the model maintained high 

recall across varying thresholds, confirming its capacity to detect true positives even in 

low-confidence predictions. 

 

Figure 9. Recall-Confidence Curve 

The F1-confidence curve in Figure 10 identifies the optimal balance point 

between precision and recall. At this threshold, the model minimizes false positives and 

negatives simultaneously. 

 

Figure 10. F1-Confidence Curve 

Research by Oqaibi et al. (2023) supports this outcome, indicating that deep 

learning-based object detection models outperformed traditional methods in both 

accuracy and consistency. 
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Figure 11. Confusion Matrix 

The confusion matrix provides a class-specific performance overview. Each class 
shows high accuracy, and only minimal misclassifications occurred. Zhang et al. (2024) 
emphasized that applying appropriate augmentation techniques greatly improves model 
generalization and accuracy, which is evident in this study's detection performance. 
 
Qualitative Detection Analysis 

Qualitative assessments of pest detection reinforce the metrics previously 
discussed. Figure 12 demonstrates the accurate localization of the brown plant hopper 
with a confidence score of 0.86. The model’s ability to detect pests in cluttered 
environments was consistently observed. 

 

 
 

Figure 12. Brown Plant Hopper Detection Result 
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In Figure 13, the rice leaf caterpillar is identified with a confidence of 0.97. The 
bounding box is precisely positioned around the pest, confirming the model’s precision. 

 

 
 

Figure 13. Rice Leaf Caterpillar Detection Result 
 
Similarly, Figure 14 presents the detection of the rice stem fly with a confidence 

of 0.81. Despite the pest’s smaller size and lower contrast, the model correctly classified 
and localized it, validating its robustness in real-world variability. 

 

 
 

Figure 14. Rice Stem Fly Detection Result 
 

In a more challenging case, Figure 15 depicts the rice water weevil partially 
obscured by natural elements. Nevertheless, the model achieved a confidence score of 
0.90. Sharma et al. (2024) highlighted how AI technologies in agriculture support better 
decision-making and increase productivity, which is demonstrated in the accurate and 
timely detection results of the proposed model. 
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Figure 15. Rice Water Weevil Detection Result 
 

Real-Time Deployment Performance 
To evaluate real-time performance, the model was deployed into a custom GUI 

with integrated camera input and image upload features. It provides live pest detection 
feedback with class labels, bounding boxes, and confidence metrics. The deployed 
system reached 35 frames per second (FPS) on an NVIDIA RTX 3050 GPU, making it 
suitable for real-time applications in field environments. 

The practicality of real-time inference aligns with Sharma et al. (2024), who 
emphasized AI’s role in revolutionizing agriculture through automation and intelligent 
systems. This system empowers farmers to detect pest infestations early and respond 
efficiently, improving crop protection and yield stability. 
 

Conclusion and Future Works 
 This study developed and implemented a hybrid deep learning model that 
combines Convolutional Neural Networks (CNN) and YOLOv5 for real-time detection and 
classification of rice pests affecting both leaves and stems. The model achieved a high 
mean average precision at 50% Intersection over Union (mAP50) of 96.8%, significantly 
outperforming traditional models such as Pest-Net. The use of bounding box annotation, 
data augmentation, and structured training enabled accurate detection across eight key 
rice pest species. The system was integrated into a user-friendly Graphical User 
Interface (GUI), allowing both image upload and real-time webcam detection, which 
reinforces its practicality in agricultural field settings. 

Despite these promising results, the study acknowledges certain limitations. 
First, while the dataset was augmented and balanced, it may not entirely capture 
complex real-world scenarios such as inconsistent lighting, pest occlusion, and 
cluttered environments. Second, some misclassifications were observed among 
morphologically similar pest species, which could affect model reliability in the field. 
Lastly, the system’s reliance on high-performance GPU hardware for training and 
deployment may hinder immediate adoption in resource-constrained rural settings. 

Considering the high precision, recall, and inference speed demonstrated by the 
model, the system shows strong potential for future use by farmers and agricultural 
workers. However, field validation is needed to assess its usability under varying 

environmental conditions. 
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Future research may prioritize expanding the dataset to include additional pest 
classes and more diverse agricultural environments. Investigating lightweight AI models 
or deploying the system on edge devices (e.g., mobile phones or embedded hardware) 

would make the technology more accessible to smallholder farmers. Incorporating 
continual learning mechanisms would also allow the model to adapt over time as new 
pest species emerge or as field conditions change, contributing to long-term 
sustainability in precision agriculture.  
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